【题目】如图,直线y=x+3与x轴交于点A,与y轴交于点B,抛物线y=﹣x2+bx+c经过A、B两点.
(1)求抛物线的解析式;
(2)点P为抛物线在第二象限内一点,过点P作x轴的垂线,垂足为点M,与直线AB交于点C,过点P作x轴的平行线交抛物线于点Q,过点Q作x轴的垂线,垂足为点N,若点P在点Q左边,设点P的横坐标为m.
①当矩形PQNM的周长最大时,求△ACM的面积;
②在①的条件下,当矩形PMNQ的周长最大时,G是直线AC上一点,F是抛物线上一点,是否存在点G,使得以点P、C、G、F为顶点的四边形是平行四边形?若存在,请求出F点的坐标;若不存在,请说明理由.
【答案】(1)y=﹣x2﹣2x+3;(2)①,②F1(﹣1,4),F2(,),F3(,).
【解析】分析:(1)先求出A、B两点的坐标,再代入抛物线y=﹣x2+bx+c求出b、c的值即可;
(2)①先用m表示出PM的长,再求出抛物线的对称轴及PQ的长,利用矩形的面积公式可得出其周长的解析式,进而可得出矩形面积的最大值,求出C点坐标,由三角形的面积公式即可得出结论;
②根据C点坐标得出P点坐标,故可得出PC的长,再分点F在点G的上方与点F在点G的下方两种情况进行讨论即可.
详解:(1)∵直线y=x+3与x轴交于点A,与y轴交于点B,∴A(﹣3,0),B(0,3).
∵抛物线y=﹣x2+bx+c经过A、B两点,∴,解得:,∴抛物线的解析式为y=﹣x2﹣2x+3;
(2)①∵点P的横坐标为m,∴P(m,﹣m2﹣2m+3),PM=﹣m2﹣2m+3.
∵抛物线y=﹣x2﹣2x+3的对称轴为x=﹣=﹣=﹣1,∴PQ=2(﹣1﹣m)=﹣2m﹣2,∴矩形PQMN的周长=2(PM+PQ)=2(﹣m2﹣2m+3﹣2m﹣2)=﹣2m2﹣8m+2=﹣2(m+2)2+10,当m=﹣2时,矩形PQMN的周长最大,此时点C的坐标为(﹣2,1),CM=AM=1,∴S△ACM=×1×1=;
②∵C(﹣2,1),∴P(﹣2,3),∴PC=3﹣1=2.
∵点P、C、G、F为顶点的四边形是平行四边形,GF∥y轴,∴GF∥
设G(x,x+3),则F(x,﹣x2﹣2x+3),当点F在点G的上方时,﹣x2﹣2x+3﹣(x+3)=2,解得x=﹣1或x=﹣2(舍去),当x=﹣1时,﹣x2﹣2x+3=4,即F1(﹣1,4);
当点F在点G的下方时,x+3﹣(﹣x2﹣2x+3)=2,解得:x=或x=.
当x=时,﹣x2﹣2x+3=;
当x=时,﹣x2﹣2x+3=,
故F2(),F3().
综上所示,点F的坐标为F1(﹣1,4),F2(),F3().
科目:初中数学 来源: 题型:
【题目】已知关于x的方程x2﹣kx+k2+n=0有两个不相等的实数根x1、x2,且(2x1+x2)2﹣8(2x1+x2)+15=0.
(1)求证:n<0;
(2)试用k的代数式表示x1;
(3)当n=﹣3时,求k的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知AB//CD,点C在点D的右侧,∠ABC,∠ADC的平分线交于点E(不与B,D点重合).,.
(1)若点B在点A的左侧,求∠BED的度数(用含的代数式表示).
(2)将线段BC沿DC方向平移,当点B移动到点A右侧时,请画出图形并判断的度数是否改变.若改变,请求出的度数(用含的代数式表示);若不变,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】随着社会的发展,通过微信朋友圈发布自己每天行走的步数已经成为一种时尚.“健身达人”小陈为了了解他的好友的运动情况.随机抽取了部分好友进行调查,把他们6月1日那天行走的情况分为四个类别:A(0~5000步)(说明:“0~5000”表示大于等于0,小于等于5000,下同),B(5001~10000步),C(10001~15000步),D(15000步以上),统计结果如图所示:
请依据统计结果回答下列问题:
(1)本次调查中,一共调查了 位好友.
(2)已知A类好友人数是D类好友人数的5倍.
①请补全条形图;
②扇形图中,“A”对应扇形的圆心角为 度.
③若小陈微信朋友圈共有好友150人,请根据调查数据估计大约有多少位好友6月1日这天行走的步数超过10000步?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,过点A(2,0)的两条直线,分别交轴于B,C,其中点B在原点上方,点C在原点下方,已知AB=.
(1)求点B的坐标;
(2)若△ABC的面积为4,求的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,已知直线AB的函数解析式为y=﹣2x+8,与x轴交于点A,与y轴交于点B.
(1)求A、B两点的坐标;
(2)若点P(m,n)为线段AB上的一个动点(与A、B不重合),作PE⊥x轴于点E,PF⊥y轴于点F,连接EF,问:
①若△PAO的面积为S,求S关于m的函数关系式,并写出m的取值范围;
②是否存在点P,使EF的值最小?若存在,求出EF的最小值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为提高中小学生的身体素质,各校大力开展校园足球活动,某体育用品商店抓住这一商机,第一次用30000元购进A、B两种型号的足球,并很快销售完,共获利12200元,其进价和售价如下表:
A | B | |
进价/(元/个) | 120 | 200 |
售价/(元/个) | 170 | 280 |
(1)体育用品商店购进A、B两种型号的足球各多少个?
(2)该体育用品商店第二次准备用不超过40000元的资金再次购进A、B两种型号的足球共260个,最少购进A种型号的足球多少个?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有甲、乙两种客车,2辆甲种客车与3辆乙种客车的总载客量为180人,1辆甲种客车与2辆乙种客车的总载客量为105人.
(1)请问1辆甲种客车与1辆乙种客车的载客量分别为多少人?
(2)某学校组织240名师生集体外出活动,拟租用甲、乙两种客车共6辆,一次将全部师生送到指定地点.若每辆甲种客车的租金为400元,每辆乙种客车的租金为280元,请给出最节省费用的租车方案,并求出最低费用.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com