精英家教网 > 初中数学 > 题目详情

【题目】已知AB//CD,点C在点D的右侧,∠ABC,∠ADC的平分线交于点E(不与BD点重合)..

(1)若点B在点A的左侧,求∠BED的度数(用含的代数式表示).

(2)将线段BC沿DC方向平移,当点B移动到点A右侧时,请画出图形并判断的度数是否改变.若改变,请求出的度数(用含的代数式表示);若不变,请说明理由.

【答案】(1)BED= n°+40°(2)的度数改变,.

【解析】

1)过点E,根据平行线的性质推出,根据角平分线的定义得出,代入可得.

2)分类讨论,分点E在直线ABCD之间时,点E在直线AB上方,点E在直线CD的下方三种情况,过点E作,根据平行线的性质及角平分线的定义表达出角,代入即可.

(1)如图(1),过点E.

.

BE平分DE平分

.

(2)的度数改变,.

当点E在直线ABCD之间时,过点E,如图2.

BE平分DE平分

,∴

当点E在直线AB上方时,如图(3)

此时的平分线与的平分线BF的反向延长线相交于点E

过点E.

同理得.

,∴

.

当点E在直线CD的下方时,如图(4)

此时的分线与∠ADC的平分线的反向延长线相交于点E,过E

同理得.

综上所述,的度数改变,

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】观察如图图形,把一个三角形分别连接其三边中点,构成4个小三角形,挖去中间的一个小三角形(如图1),对剩下的三个小三角形再分别重复以上做法,……,据此解答下面的问题

(1)填写下表:

图形

挖去三角形的个数

图形1

1

图形2

1+3

图形3

1+3+9

图形4

   

(2)根据这个规律,求图n中挖去三角形的个数wn;(用含n的代数式表示)

(3)若图n+1中挖去三角形的个数为wn+1,求wn+1﹣Wn

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为推广阳光体育大课间活动,我市某中学决定在学生中开设A:实心球,B:立定跳远,C:跳绳,D:跑步四种活动项目.为了了解学生对四种项目的喜欢情况,随机抽取了部分学生进行调查,并将调查结果绘制成如图①②的统计图.请结合图中的信息解答下列问题:

1在这项调查中,共调查了多少名学生?

2请计算本项调查中喜欢立定跳远的学生人数和所占百分比,并将两个统计图补充完整;

3若调查到喜欢跳绳5名学生中有3名男生,2名女生.现从这5名学生中任意抽取2名学生.请用画树状图或列表的方法,求出刚好抽到同性别学生的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,直线y=﹣x+8x轴交于点A,与直线y=x交于点B,点PAB边的中点,作PCOB与点C,PDOA于点D.

(1)填空:点A坐标为   ,点B的坐标为   CPD度数为   

(2)如图②,若点M为线段OB上的一动点,将直线PM绕点P按逆时针方向旋转,旋转角与∠AOB相等,旋转后的直线与x轴交于点N,试求MBAN的值;

(3)在(2)的条件下,当MB<2时(如图③),试证明:MN=DN﹣MC;

(4)在(3)的条件下,设MB=t,MN=s,直接写出st的函数表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知矩形ABCD,AB=8,BC=6,以点A为圆心,5为半径作圆,点M为圆A上一动点,连接CM,DM,则CM+MD的最小值为_________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A是反比例函数y=图象上的任意一点,过点A作AB∥x轴,AC∥y轴,分别交反比例函数y=的图象于点B,C,连接BC,E是BC上一点,连接并延长AE交y轴于点D,连接CD,则SDEC﹣SBEA=_________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知 ABC中,AB=AC BAC=90°,直角∠ EPF的顶点PBC中点,两边PEPF分别交ABAC于点EF,给出以下四个结论:①AE=CF②△ EPF是等腰直角三角形; 2S四边形AEPF=S ABCBE+CF=EF.当∠ EPF ABC内绕顶点P旋转时(点EAB重合).上述结论中始终正确的有( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y=x+3与x轴交于点A,与y轴交于点B,抛物线y=﹣x2+bx+c经过A、B两点.

(1)求抛物线的解析式;

(2)点P为抛物线在第二象限内一点,过点P作x轴的垂线,垂足为点M,与直线AB交于点C,过点P作x轴的平行线交抛物线于点Q,过点Q作x轴的垂线,垂足为点N,若点P在点Q左边,设点P的横坐标为m.

①当矩形PQNM的周长最大时,求△ACM的面积;

②在①的条件下,当矩形PMNQ的周长最大时,G是直线AC上一点,F是抛物线上一点,是否存在点G,使得以点P、C、G、F为顶点的四边形是平行四边形?若存在,请求出F点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读理解:

A、B、C为数轴上三点,若点CA的距离是点CB的距离2倍,我们就称点C是【A,B】的好点.

例如,如图1,点A表示的数为-1,点B表示的数为2.表示1的点C到点A的距离是2,到点B的距离是1,那么点C是【A,B】的好点;又如,表示0的点D到点A的距离是1,到点B的距离是2,那么点D就不是【A,B】的好点,但点D是【B,A】的好点.

知识运用:如图2,M、N为数轴上两点,点M所表示的数为-2,点N所表示的数为4.

(1)数______所表示的点是【M,N】的好点;

(2)如图3,A、B为数轴上两点,点A所表示的数为-20,点B所表示的数为40.现有一只电子蚂蚁P从点B出发,以2个单位每秒的速度向左运动,到达点A停止.当t为何值时,P、AB中恰有一个点为其余两点的好点?

查看答案和解析>>

同步练习册答案