精英家教网 > 初中数学 > 题目详情

【题目】如图①,直线y=﹣x+8x轴交于点A,与直线y=x交于点B,点PAB边的中点,作PCOB与点C,PDOA于点D.

(1)填空:点A坐标为   ,点B的坐标为   CPD度数为   

(2)如图②,若点M为线段OB上的一动点,将直线PM绕点P按逆时针方向旋转,旋转角与∠AOB相等,旋转后的直线与x轴交于点N,试求MBAN的值;

(3)在(2)的条件下,当MB<2时(如图③),试证明:MN=DN﹣MC;

(4)在(3)的条件下,设MB=t,MN=s,直接写出st的函数表达式.

【答案】(1)(8,0),(4,4),120°.(2)16;(3)证明见解析;(4)S=+t﹣4(0t2).

【解析】分析:(1)利用待定系数法可得A、B两点坐标,根据tanBOA=,可得∠BOA=60°,再根据四边形内角和定理可求∠CPD;

(2)只要证明PAN∽△MBP,可得,由此即可解决问题;

(3)如图③中,在DO上截取DK=MC,连接OP.只要证明PCM≌△PDK,PNM≌△PNK即可解决问题;

(4)利用(2)(3)中的结论即可解决问题;

详解:(1)如图①中,

对于直线y=﹣x+8,令y=0,解得x=8,可得A(8,0),

,解得

B(4,4),

tanBOA=

∴∠BOA=60°,

PCOB与点C,PDOA于点D,

∴∠PCO=PDO=90°,

∴∠CPD=120°,

故答案为(8,0),(4,4),120°.

(2)如图②中,

OA=OB=8,AOB=60°,

∴△AOB是等边三角形,

AB=OA=OB=8,OBA=OAB=60°,

PA=PB=4,

∵∠APM=APN+MPN=PMB+PBM,

∵∠MPN=PBM=60°,

∴∠APN=PMB,

∴△PAN∽△MBP,

MBAN=4×4=16.

(3)如图③中,在DO上截取DK=MC,连接OP.

OB=OA,PB=PA,

∴∠POB=POA,

PCOB与点C,PDOA于点D,

PC=PD,∵∠PCM=PDK=90°,MC=DK,

∴△PCM≌△PDK,

PM=PK,CPM=DPK,

∴∠MPK=CPD=120°,

∵∠MPN=60°,

∴∠MPN=KPN=60°,PN=PN,

∴△PNM≌△PNK,

MN=KN=DN﹣DK=DN﹣CM.

(4)如图③中,由(2)可知:AN=,易知BC=AD=2,

MN=DN﹣CM,

MN=(AN﹣AD)﹣(BC﹣BM),

S=﹣2﹣(2﹣t)=+t﹣4(0<t<2).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某片果园有果树80棵,现准备多种一些果树提高果园产量,但是如果多种树,那么树之间的距离和每棵树所受光照就会减少,单棵树的产量随之降低,若该果园每棵果树产果y千克,增种果树x棵,它们之间的函数关系如图所示.

(1)求y与x之间的函数解析式;

(2)在投入成本最低的情况下,增种果树多少棵时,果园可以收获果实6750千克?

(3)当增种果树多少棵时,果园的总产量w(千克)最大?最大产量是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的方程x2kx+k2+n0有两个不相等的实数根x1x2,且(2x1+x2282x1+x2+150

1)求证:n0

2)试用k的代数式表示x1

3)当n=﹣3时,求k的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=x2+bx+cx轴分别交于A(1,0),B(5,0)两点.

(1)求抛物线的解析式;

(2)过点C(﹣3,0)在x轴下方作x轴的垂线,再以点A为圆心、5为半径长画弧,交先前所作垂线于D,连接AD(如图),将RtACD沿x轴向右平移m个单位,当点D落在抛物线上时,求m的值;

(3)在(2)的条件下,当点D第一次落在抛物线上记为点E,点P是抛物线对称轴上一点.试探究:在抛物线上是否存在点Q,使以点B、E、P、Q为顶点的四边形是平行四边形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如果两个三角形的两条边和其中一边上的高对应相等,那么这两个三角形的第三边所对的角的关系是________________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算

(1)(-3)-(-2)+(-4)

(2)(-)-(-)-|-|-(-)

(3)-23÷×(-)2

(4)()×(-36)

(5)-14-×

(6)(-1)4+5÷(-)×(-6)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知AB//CD,点C在点D的右侧,∠ABC,∠ADC的平分线交于点E(不与BD点重合)..

(1)若点B在点A的左侧,求∠BED的度数(用含的代数式表示).

(2)将线段BC沿DC方向平移,当点B移动到点A右侧时,请画出图形并判断的度数是否改变.若改变,请求出的度数(用含的代数式表示);若不变,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】随着社会的发展,通过微信朋友圈发布自己每天行走的步数已经成为一种时尚.健身达人小陈为了了解他的好友的运动情况.随机抽取了部分好友进行调查,把他们61日那天行走的情况分为四个类别:A(0~5000步)(说明:“0~5000”表示大于等于0,小于等于5000,下同),B(5001~10000步),C(10001~15000步),D(15000步以上),统计结果如图所示:

请依据统计结果回答下列问题:

(1)本次调查中,一共调查了   位好友.

(2)已知A类好友人数是D类好友人数的5倍.

①请补全条形图;

②扇形图中,“A”对应扇形的圆心角为   度.

③若小陈微信朋友圈共有好友150人,请根据调查数据估计大约有多少位好友61日这天行走的步数超过10000步?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有甲、乙两种客车,2辆甲种客车与3辆乙种客车的总载客量为180人,1辆甲种客车与2辆乙种客车的总载客量为105人.

1)请问1辆甲种客车与1辆乙种客车的载客量分别为多少人?

2)某学校组织240名师生集体外出活动,拟租用甲、乙两种客车共6辆,一次将全部师生送到指定地点.若每辆甲种客车的租金为400元,每辆乙种客车的租金为280元,请给出最节省费用的租车方案,并求出最低费用.

查看答案和解析>>

同步练习册答案