精英家教网 > 初中数学 > 题目详情

【题目】已知矩形ABCD的一条边AD8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处.如图,已知折痕与边BC交于点O,连接APOPOA

1)求证:

2)若△OCP与△PDA的面积比为14,求边AB的长.

【答案】(1)详见解析;(2)10.

【解析】

①只需证明两对对应角分别相等可得两个三角形相似;故.
根据相似三角形的性质求出PC长以及APOP的关系,然后在RtPCO中运用勾股定理求出OP长,从而求出AB长.

∵四边形ABCD是矩形,

AD=BC,DC=AB,DAB=B=C=D=90°.

由折叠可得:AP=AB,PO=BO,PAO=BAO,APO=B.

∴∠APO=90°.

∴∠APD=90°CPO=POC.

∵∠D=C,APD=POC.

OCPPDA.

.

OCPPDA的面积比为1:4,

OCPD=OPPA=CPDA=14√=12.

PD=2OC,PA=2OP,DA=2CP.

AD=8,

CP=4,BC=8.

OP=x,则OB=x,CO=8x.

PCO中,

∵∠C=90,CP=4,OP=x,CO=8x,

x2=(8x)2+42.

解得:x=5.

AB=AP=2OP=10.

∴边AB的长为10.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠C90°,AB4,以AB的中点O为圆心作圆,圆O分别与ACBC相切于点DE两点,则弧DE的长为__

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(2014山东淄博)如图,四边形ABCD中,AC⊥BDBD于点E,点FM分别是ABBC的中点,BN平分∠ABEAM于点NABACBD,连接MFNF

(1)判断△BMN的形状,并证明你的结论;

(2)判断△MFN△BDC之间的关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直角△ABC的三个顶点分别是A(﹣3,1),B(0,3),C(0,1)

(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C1

(2)分别连结AB1、BA1后,求四边形AB1A1B的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图山坡上有一根旗杆AB,旗杆底部B点到山脚C点的距离BC米,斜坡BC的坡度i=1 .小明在山脚的平地F处测量旗杆的高,点C到测角仪EF的水平距离CF=1米,从E处测得旗杆顶部A的仰角为45°,旗杆底部B的仰角为20°

1)求坡角∠BCD

2)求旗杆AB的高度.

(参考数值:sin20°≈0.34cos20°≈0.94tan20°≈0.36

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线与反比例函数的图象相交于点Aa3),且与x轴相交于点B

1)求该反比例函数的表达式;(2)若Py轴上的点,且△AOP的面积是△AOB的面积的,请直接写出点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,抛物线x轴于点,交y轴于点C

求抛物线的解析式;

如图2D点坐标为,连结若点H是线段DC上的一个动点,求的最小值.

如图3,连结AC,过点Bx轴的垂线l,在第三象限中的抛物线上取点P,过点P作直线AC的垂线交直线l于点E,过点Ex轴的平行线交AC于点F,已知

求点P的坐标;

在抛物线上是否存在一点Q,使得成立?若存在,求出Q点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,AD平分∠BACBC于点DFAD上一点,且BFBDBF的延长线交AC于点E

1)求证:ABADAFAC

2)若∠BAC60°AB4AC6,求DF的长;

3)若∠BAC60°,∠ACB45°,直接写出的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)如图1,在五边形ABCDE中,ABAE,∠B=∠BAE=∠AED90°,∠CAD45°,试猜想BCCDDE之间的数量关系.小明经过仔细思考,得到如下解题思路:

将△ABC绕点A逆时针旋转90°至△AEF,由∠B=∠AED90°,得∠DEF180°,即点DEF三点共线,易证△ACD   ,故BCCDDE之间的数量关系是   

2)如图2,在四边形ABCD中,ABAD,∠ABC+D180°,点EF分别在边CBDC的延长线上,∠EAFBAD,连接EF,试猜想EFBEDF之间的数量关系,并给出证明.

3)如图3,在△ABC中,∠BAC90°ABAC,点DE均在边BC上,且∠DAE45°,若BD2CE3,则DE的长为   

查看答案和解析>>

同步练习册答案