【题目】下列命题①如果a,b,c为一组勾股数,那么4a,4b,4c仍是勾股数;②如果三角形的三个内角的度数比是3:4:5,那么这个三角形是直角三角形;③如果一个三角形的三边是12、25、21,那么此三角形必是直角三角形;④一个等腰直角三角形的三边是a,b,c,(a>b=c),那么a2:b2:c2=2:1:1.其中正确的是( )
A.①②B.①③C.①④D.②④
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中.直线y=﹣x+3与x轴交于点B,与y轴交于点C,抛物线y=ax2+bx+c经过B,C两点,与x轴负半轴交于点A,连结AC,A(-1,0)
(1)求抛物线的解析式;
(2)点P(m,n)是抛物线上在第一象限内的一点,求四边形OCPB面积S关于m的函数表达式及S的最大值;
(3)若M为抛物线的顶点,点Q在直线BC上,点N在直线BM上,Q,M,N三点构成以MN为底边的等腰直角三角形,求点N的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】画图,探究:
(1)一个正方体组合图形的主视图、左视图(如图1)所示.
①这个几何体可能是(图2)甲、乙中的 ;
②这个几何体最多可由 个小正方体构成,请在图3中画出符合最多情况的一个俯视图.
(2)如图,已知一平面内的四个点A、B、C、D,根据要求用直尺画图.
①画线段AB,射线AD;
②找一点M,使M点即在射线AD上,又在直线BC上;
③找一点N,使N到A、B、C、D四个点的距离和最短.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线分别与x轴、y轴交于两点,与直线交于点C(4,2).
(1)点A坐标为( , ),B为( , );
(2)在线段上有一点E,过点E作y轴的平行线交直线于点F,设点E的横坐标为m,当m为何值时,四边形是平行四边形;
(3)若点P为x轴上一点,则在平面直角坐标系中是否存在一点Q,使得四个点能构成一个菱形.若存在,求出所有符合条件的Q点坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下表是某班体育考试跳绳项目模拟考试时10名同学的测试成绩(单位:个/分钟)
成绩(个/分钟) | 140 | 160 | 169 | 170 | 177 | 180 |
人数 | 1 | 1 | 1 | 2 | 3 | 2 |
则关于这10名同学每分钟跳绳的测试成绩,下列说法错误的是( )
A.方差是135B.平均数是170C.中位数是173.5D.众数是177
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点P从(0,2)出发,沿所示的方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P第2019次碰到矩形的边时点P的坐标为( )
A.( 2,4 )B.( 2,0 )C.( 8,2)D.( 6,0 )
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠C= 90°,D是BC边上一点,以DB为直径的⊙O经过AB的中点E,交AD的延长线于点F,连接EF.
(1)求证:∠1= ∠F;
(2)若CD= 3,EF=,求⊙O的半径长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】尺规作图,不写作法,但要求保留作图痕迹.
(1)已知:线段a和∠α,如图.求作:△ABC,使得AB=a,∠ABC=∠α.∠BAC=2∠α.
(2)在(1)的条件下,若∠ABC=360,求∠ACB的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,直线y=﹣x+4与x轴相交于点A,与直线y=x交于点P.
(1)求点P的坐标.
(2)动点F从原点O出发,以每秒1个单位的速度在线段OA上向点A作匀速运动,连接PF,设运动时间为t秒,△PFA的面积为S,求出S关于t的函数关系式.
(3)若点M是y轴上任意一点,点N是坐标平面内任意一点,若以O、M、N、P为顶点的四边形是菱形,请直接写出点N的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com