精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC中,∠C=90°,AC=6BC=8

1)用直尺和圆规作∠A的平分线,交BC于点D;(要求:不写作法,保留作图痕迹)

2SADCSADB .(直接写出结果)

【答案】(1)答案见解析;(2)

【解析】

1)利用基本作图(作已知角的角平分线)作AD

2)过DDEABE.由角平分线的性质得到CD=DE

在△ABC中,根据勾股定理求出AB的长,然后利用三角形面积公式计算即可得出结论.

1)如图:

AD就是所求的射线;

2)过DDEABE

AD是角平分线,∠C=90°,∴CD=DE

在△ABC中,∵∠C=90°,AC=6BC=8,∴AB===10

SADCSADB=ACCD:(ABDE=ACAB=610=

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知A为⊙O外一点,连结OA交⊙O于P,AB为⊙O的切线,B为切点,AP=5㎝,AB= ㎝,则劣弧 与AB,AP所围成的阴影的面积是.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】探究:

如图,在△ABC中,点DEF分别在边ABACCB上,且DEBCEFAB,若∠ABC=65°,求∠DEF的度数.请将下面的解答过程补充完整,并填空(理由或数学式):

解:∵DEBC(   )

∴∠DEF   (   )

EFAB

   =∠ABC(   )

∴∠DEF=∠ABC(   )

∵∠ABC=65°

∴∠DEF   

应用:

如图,在△ABC中,点DEF分别在边ABACBC的延长线上,且DEBCEFAB,若∠ABC=β,则∠DEF的大小为   (用含β的代数式表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某巡警车在一条南北大道上巡逻,某天巡警车从岗亭处出发,规定向北方向为正,当天行驶纪录如下(单位:千米)

10,﹣9+7,﹣15+6,﹣5+4,﹣2

1)最终巡警车是否回到岗亭处?若没有,在岗亭何方,距岗亭多远?

2)摩托车行驶1千米耗油0.2升,油箱有油10升,够不够?若不够,途中还需补充多少升油?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知点A(3,0),以A为圆心作⊙A与Y轴切于原点,与x轴的另一个交点为B,过B作⊙A的切线l.

(1)以直线l为对称轴的抛物线过点A及点C(0,9),求此抛物线的解析式;
(2)抛物线与x轴的另一个交点为D,过D作⊙A的切线DE,E为切点,求DE的长;
(3)点F是切线DE上的一个动点,当△BFD与△EAD相似时,求出BF的长 .

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为16cm2 , 则该半圆的半径为( ).

A. cm
B.9 cm
C. cm
D. cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一圆与平面直角坐标系中的x轴切于点A(8,0),与y轴交于点B(0,4),C(0,16),则该圆的直径为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在数轴上 A点表示的数是 a ,B 点表示的数是b ,且 ab满足|a 8|b-220.动线段 CD=4(点 D 在点 C 的右侧),从点 C与点 A重合的位置出发,以每秒 2 个单位的速度向右运动,运动时间为 t秒.

(1)求a,b的值, 运动过程中,点 D 表示的数是多少,(用含有 t 的代数式表示)

(2)在 B、C、D 三个点中,其中一个点是另外两个点为端点的线段的中点,求 t 的值;

(3)当线段 CD 在线段 AB上(不含端点重合)时,如图,图中所有线段的和记作为 S, 则 S的值是否随时间 t 的变化而变化?若变化,请说明理由;若不变,请求出 S值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】四川雅安发生地震后,某校学生会向全校1900名学生发起了“心系雅安”捐款活动,为了解捐款情况,学会生随机调查了部分学生的捐款金额,并用得到的数据绘制了如下统计图和图,请根据相关信息,解答下列是问题:

(1)本次接受随机抽样调查的学生人数为    ,图中m的值是    

(2)求本次调查获取的样本数据的平均数、众数和中位数;

(3)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.

查看答案和解析>>

同步练习册答案