精英家教网 > 初中数学 > 题目详情

【题目】探究:

如图,在△ABC中,点DEF分别在边ABACCB上,且DEBCEFAB,若∠ABC=65°,求∠DEF的度数.请将下面的解答过程补充完整,并填空(理由或数学式):

解:∵DEBC(   )

∴∠DEF   (   )

EFAB

   =∠ABC(   )

∴∠DEF=∠ABC(   )

∵∠ABC=65°

∴∠DEF   

应用:

如图,在△ABC中,点DEF分别在边ABACBC的延长线上,且DEBCEFAB,若∠ABC=β,则∠DEF的大小为   (用含β的代数式表示).

【答案】探究:见解析应用:见解析.

【解析】

探究:依据两直线平行,内错角相等以及两直线平行,同位角相等,即可得到∠DEF=∠ABC,进而得出∠DEF的度数.应用:依据两直线平行,同位角相等以及两直线平行,同旁内角互补,即可得到∠DEF的度数.

解:探究:∵DEBC(已知)

∴∠DEF=CFE(两直线平行,内错角相等)

EFAB

∴∠CFE=ABC(两直线平行,同位角相等)

∴∠DEF=ABC(等量代换)

∵∠ABC=65°

∴∠DEF=65°

故答案为:已知;CFE;两直线平行,内错角相等;CFE;两直线平行,同位角相等;等量代换;65°.

应用:DEBC

∴∠ABC=D=β

EFAB

∴∠D+DEF=180°

∴∠DEF=180°﹣D=180°﹣β,

故答案为:180°﹣β.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】下面是小明设计的“作角的平分线”的尺规作图的过程

已知:如图1,

求作:射线,使它平分

作法:如图2,

①以点为圆心,任意长为半径作弧,交于点,交于点

②分别以点为圆心,以大于的同样长为半径作弧,两弧交于点

③作射线

所以射线就是所求作的射线

根据小明设计的尺规作图的过程,

(1)使用直尺和圆规,补全图形(保留作图痕迹);

(2)完成下面的证明

证明:连接

中,

( )(填推理的依据).

(全等三角形的 相等).

即射线平分(角平分线定义).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解答下面的问题:

1)如果a2+a3,求a2+a+2015的值.

2)已知ab=﹣3,求3ba25a+5b+5的值.

3)已知a2+2ab=﹣3abb2=﹣5,求4a2+ab+b2的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ABC中,AB=ACDABC所在平面内的一点,过DDEABDFAC分别交直线AC,直线AB于点EF.

1)如图1,当点D在线段BC上时,通过观察分析线段DEDFAB之间的数量关系,并说明理由;

2)如图2,当点D在直线BC上,其他条件不变时,试猜想线段DEDFAB之间的数量关系(请直接写出等式,不需证明);

3)如图3,当点DABC内一点,过DDEABDFAC分别交直线AC,直线AB和直线BCEFG. 试猜想线段DEDFDGAB之间的数量关系(请直接写出等式,不需证明).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】结合数轴与绝对值的知识回答下列问题:

(1)数轴上表示41的两点之间的距离为|4﹣1|=   ;表示5和﹣2两点之间的距离为|5﹣(﹣2)|=|5+2|=   ;一般地,数轴上表示数m和数n的两点之间的距离等于|m﹣n|,如果表示数a和﹣2的两点之间的距离是3,那么a=   

(2)若数轴上表示数a的点位于﹣42之间,求|a+4|+|a﹣2|的值;

(3)当a=   时,|a+5|+|a﹣1|+|a﹣4|的值最小,最小值为   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将矩形ABCD沿对角线AC翻折,点B落在点F处,FCADE

1)求证:AFE≌△CDF

2)若AB=4BC=8,求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某市对教师试卷讲评课中学生参与的深度和广度进行评价,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名初中生的参与情况,绘制了如下两幅不完整的统计图,请根据图中所给的信息解答下列问题:

(1)这次评价中,一共抽查了名学生;
(2)请将条形统计图补充完整;
(3)如果全市有16万初中学生,那么在试卷讲评课中,“独立思考”的学生约有多少万人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠C=90°,AC=6BC=8

1)用直尺和圆规作∠A的平分线,交BC于点D;(要求:不写作法,保留作图痕迹)

2SADCSADB .(直接写出结果)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】你能求(x1)(x99+x98+x97++x+1)的值吗?遇到这样的问题,我们可以先思考一下,从简单的情形入手.先分别计算下列各式的值.

x1)(x+1)=x21

x1)(x2+x+1)=x31

x1)(x3+x2+x+1)=x41

……

由此我们可以得到:(x1)(x99+x98+x97++x+1)=   

请你利用上面的结论,再完成下面两题的计算:

1)(﹣250+(﹣249+(﹣248++(﹣2+1

2)若x3+x2+x+10,求x2019的值

查看答案和解析>>

同步练习册答案