2£®ÒÑÖª£ºÅ×ÎïÏßy=-x2+bx+cµÄͼÏó½»yÖáÓÚµãC£¬Ò»´Îº¯Êýy=-x+m½»yÖáÓÚµãD£¬½»Å×ÎïÏßÓÚA¡¢BÁ½µã£¬B£¨6£¬-3£©£¬ÇÒAB=2AD£®
£¨1£©ÇóÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©µãPΪÏß¶ÎABÉÏÒ»µã£¬¹ýµãP×÷yÖáµÄƽÐÐÏߣ¬·Ö±ð½»xÖá¼°Å×ÎïÏßÓÚH¡¢QÁ½µã£¬ÈôµãPµÄºá×ø±êΪn£¬¡÷AQBµÄÃæ»ýΪS£¬ÇóSÓënµÄº¯Êý¹ØÏµÊ½£¨Ö±½Óд³ö×Ô±äÁ¿È¡Öµ·¶Î§£©£»
£¨3£©ÔÚ£¨2£©µÄÌõ¼þÏ£¬µ±SÈ¡×î´óֵʱ£¬ÔÚÅ×ÎïÏßͼÏóÉÏÊÇ·ñ´æÔÚÕâÑùµÄµãR£¬Ê¹µÃ¡ÏPAR=¡ÏPQB£¿Èô´æÔÚ£¬Çó³öRµã×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©½«µãBµÄ×ø±ê´úÈëÖ±ÏߵĽâÎöʽ¿ÉÇóµÃm=3£¬¿ÉµÃµ½Ò»´Îº¯ÊýµÄ½âÎöʽΪy=-x+3£¬´Ó¶ø¿ÉÇóµÃµãDµÄ×ø±êΪ£¨0£¬3£©ÓÉAB=2AD¿ÉÇóµÃµãAµÄ×ø±êΪ£¨2£¬1£©£¬È»ºó½«µãA¡¢BµÄ×ø±ê´úÈëÖ±ÏߵĽâÎöʽ£¬¿ÉÇóµÃb¡¢cµÄÖµ£»
£¨2£©½«µãx=n´úÈëÒ»´Îº¯ÊýµÄ½âÎöʽ¿ÉÇóµÃµãPµÄ×Ý×ø±ê£¬½«x=n´úÈëÅ×ÎïÏߵĽâÎöʽ¿ÉÇóµÃµãQµÄ×Ý×ø±ê£¬´Ó¶ø¿ÉµÃµ½QPµÄ³¤¶È£¬È»ºóÒÀ¾ÝÈý½ÇÐεÄÃæ»ý¹«Ê½¿ÉÁгöSÓënµÄº¯Êý¹ØÏµÊ½£»
£¨3£©×÷Ô²E¹ýµãA¡¢Q¡¢B£¬Ô²E½»QPÓÚµãF£¬×÷µãF¹ØÓÚABµÄ¶Ô³ÆµãF¡ä£¬Óɶþ´Îº¯ÊýµÄÐÔÖÊ¿ÉÖªµ±µãPµÄ×ø±êΪ£¨4£¬-1£©Ê±£¬SÓÐ×î´óÖµ£¬È»ºóÇóµÃAQ¡¢AB¡¢BQµÄ³¤¶È£¬ÒÀ¾Ý¹´¹É¶¨ÀíµÄÄæ¶¨Àí¿ÉÖª¡÷ABQΪֱ½ÇÈý½ÇÐΣ¬´Ó¶ø¿ÉÖªµãEÔÚxÖáÉÏ£¬ÓÉ´¹¾¶¶¨Àí¿ÉÇóµÃµãFµÄ×ø±ê£¬ÀûÓôý¶¨ÏµÊý·¨¿ÉÇóµÃAFµÄ½âÎöʽ£¬È»ºóÖ±ÏßAFÓëÅ×ÎïÏߵĽ»µã×ø±ê¼´¿ÉÇóµÃRµÄ×ø±ê£¬ÓÉÖá¶Ô³ÆµÄÐÔÖÊ¿ÉÇóµÃµãF¡äµÄ×ø±ê£¬Í¬Àí¿ÉÇóµÃÖ±ÏßAF¡äÓëÅ×ÎïÏߵĽ»µã×ø±ê£¬´Ó¶ø¿ÉÇóµÃµãRµÄ×ø±ê£®

½â´ð ½â£º£¨1£©¡ßµãB£¨6£¬-3£©ÔÚÖ±Ïßy=-x+mÉÏ£¬
¡à-6+m=-3£®
½âµÃ£ºm=3£®
¡àÒ»´Îº¯ÊýµÄ½âÎöʽΪy=-x+3£®
¡àµãDµÄ×ø±êΪ£¨0£¬3£©£®
ÓÖ¡ßµãB£¨6£¬-3£©£¬ÇÒAB=2AD£¬
¡àµãAµÄ×ø±êΪ£¨2£¬1£©£®
½«µãA¡¢BµÄ×ø±ê´úÈëÅ×ÎïÏߵĽâÎöʽµÃ£º$\left\{\begin{array}{l}{-4+2b+c=1}\\{-36+6b+c=-3}\end{array}\right.$£¬
½âµÃ£º$\left\{\begin{array}{l}{b=7}\\{c=-9}\end{array}\right.$£®
¡àÅ×ÎïÏߵĽâÎöʽΪy=-x2+7x-9£®
£¨2£©Èçͼ1Ëùʾ£º

¡ßµãPµÄºá×ø±êΪn£¬
¡àµãPµÄ×Ý×ø±êΪ-n+3£¬µãQµÄ×Ý×ø±êΪ-n2+7n-9£®
¡àQP=-n2+7n-9-£¨-n+3£©=-n2+8n-12£®
¡ß¡÷AQBµÄÃæ»ýΪS=$\frac{1}{2}QP¡Á£¨{B}_{x}-{A}_{x}£©$£¬
¡àS=$\frac{1}{2}¡Á4¡Á$£¨-n2+8n-12£©=-2n2+16n-24£®
¡àSÓënµÄº¯Êý¹ØÏµÊ½ÎªS=-2n2+16n-24£¨2£¼n£¼6£©£®
£¨3£©µ±n=-$\frac{b}{2a}$=-$\frac{16}{-2¡Á2}$=4ʱ£¬SÓÐ×î´óÖµ£®
¡àµãPµÄ×ø±êΪ£¨4£¬-1£©£¬µãQµÄ×ø±êΪ£¨4£¬3£©£®
Èçͼ2Ëùʾ£¬×÷Ô²E¹ýµãA¡¢Q¡¢B£¬Ô²E½»QPÓÚµãF£¬×÷µãF¹ØÓÚABµÄ¶Ô³ÆµãF¡ä£®

¡ßÓÉÁ½µãÖ®¼äµÄ¾àÀ빫ʽ¿ÉÖª£»AQ2=£¨4-2£©2+£¨3-1£©2=8£»QB2=£¨6-4£©2+£¨-3-3£©2=40£»AB2=£¨6-2£©2+£¨-3-1£©2=32£®
¡àAQ2+AB2=QB2£®
¡à¡÷AQBΪֱ½ÇÈý½ÇÐΣ®
¡àQBΪԲEµÄÖ±¾¶£®
¡àEΪQ¡¢BµÄÖе㣮
¡àµãEµÄ×ø±êΪ£¨5£¬0£©£®
¡ßµãEÔÚxÖáÉÏ£¬QP¡ÍxÖᣬ
¡àQG=FG£®
¡àµãFµÄ×ø±êΪ£¨4£¬-3£©£®
ÉèÖ±ÏßAFµÄ½âÎöʽΪy=kx+b£¬¸ù¾ÝÌâÒâµÃ£º$\left\{\begin{array}{l}{4k+b=-3}\\{2k+b=1}\end{array}\right.$£®
½âµÃ£º$\left\{\begin{array}{l}{k=-2}\\{b=5}\end{array}\right.$£®
¡àÖ±ÏßAFµÄ½âÎöʽΪy=-2x+5£®
½«y=-2x+5Óëy=-x2+7x-9ÁªÁ¢½âµÃ£º$\left\{\begin{array}{l}{{x}_{1}=2}\\{{y}_{1}=1}\end{array}\right.$£¬$\left\{\begin{array}{l}{{x}_{2}=7}\\{{y}_{2}=-9}\end{array}\right.$£®
¡àRµÄ×ø±êΪ£¨7£¬-9£©£®
¡ßµãF¡äÓëµãF¹ØÓÚAB¶Ô³Æ£¬
¡àµãF¡äµÄ×ø±êΪ£¨6£¬-1£©£®
ÉèÖ±ÏßAF¡äµÄ½âÎöʽΪy=k1x+b1£¬¸ù¾ÝÌâÒâµÃ£º$\left\{\begin{array}{l}{6{k}_{1}+{b}_{1}=-1}\\{2{k}_{1}+{b}_{1}=1}\end{array}\right.$£®
½âµÃ£º${k}_{1}=-\frac{1}{2}$£¬b1=2£®
¡àÖ±ÏßAF¡äµÄ½âÎöʽΪy=$-\frac{1}{2}x$+2£®
½«y=$-\frac{1}{2}x$+2Óëy=-x2+7x-9ÁªÁ¢½âµÃ$\left\{\begin{array}{l}{{x}_{1}=2}\\{{y}_{1}=1}\end{array}\right.$£¬$\left\{\begin{array}{l}{{x}_{2}=5.5}\\{{y}_{2}=-\frac{3}{4}}\end{array}\right.$£®
¡àRµÄ×ø±êΪ£¨5.5£¬-$\frac{3}{4}$£©£®
×ÛÉÏËùÊö£¬µãRµÄ×ø±êΪ£¨5.5£¬-$\frac{3}{4}$£©»ò£¨7£¬-9£©£®

µãÆÀ ±¾ÌâÖ÷Òª¿¼²éµÄÊǶþ´Îº¯ÊýµÄ×ÛºÏÓ¦Ó㬽â´ð±¾ÌâÖ÷ÒªÓ¦ÓÃÁ˶þ´Îº¯ÊýµÄͼÏóºÍÐÔÖÊ¡¢¹´¹É¶¨ÀíµÄÄæ¶¨Àí¡¢Á½µã¼äµÄ¾àÀ빫ʽ¡¢Ô²µÄÐÔÖÊ¡¢´ý¶¨ÏµÊý·¨Çóº¯ÊýµÄ½âÎöʽ¡¢´¹¾¶¶¨Àí£¬¹¹Ôì³ö¹ýµãA¡¢B¡¢QÈýµãµÄÔ²ÊǽâÌâµÄ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®°Ñ¶àÏîʽy3-x3-xy2-x2y°´xµÄ½µÃÝÅÅÁÐÊÇ-x3-x2y-xy2+y3£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®½«Ò»Ð©ÀⳤΪ1µÄÕý·½Ìå°Ú·ÅÔÚ3¡Á3µÄÆ½ÃæÉÏ£¨Èçͼ1Ëùʾ£©£¬ÆäÕýÊÓͼºÍ²àÊÓͼ·Ö±ðÈçͼ2¡¢Í¼3£¬¼Ç°Ú·ÅµÄÕý·½Ìå¸öÊýµÄ×î´óֵΪm£¬×îСֵΪn£¬Ôòm-n=£¨¡¡¡¡£©
A£®4B£®5C£®6D£®7

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®Èçͼ£¬ÔÚ¡÷ABCÖУ¬¡ÏACB=90¡ã£¬DΪACÉÏÒ»µã£¬DE¡ÍABÓÚµãE£¬AC=12£¬BC=5£®
£¨1£©Çócos¡ÏADEµÄÖµ£»
£¨2£©µ±DE=DCʱ£¬ÇóADµÄ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®Èçͼ£¬ÒÑÖªBD=CE£¬¡Ï1=¡Ï2£¬ÇóÖ¤£ºAB=AC£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®Èçͼ£¬¶þ´Îº¯Êýy=ax2+bx+c£¨a¡Ù0£©µÄͼÏóÓëxÖá½»ÓÚA£¨-1£¬0£©£¬BÁ½µã£¬ÓëyÖá½»ÓÚµãC£¨0£¬5£©£¬µãD£¨1£¬8£©ÔÚÅ×ÎïÏßÉÏ£¬ÇóÅ×ÎïÏß¶ÔÓ¦µÄº¯Êý±í´ïʽ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®$\frac{1}{2}$$£¨\overrightarrow a+2\overrightarrow b-2\overrightarrow c£©-2£¨2\overrightarrow a+3\overrightarrow b-\overrightarrow c£©$-$\frac{7}{2}$$\overrightarrow{a}$-5$\overrightarrow{b}$+$\overrightarrow{c}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®Èçͼ£¬¡÷ABCÄÚ½ÓÓÚ¡ÑO£¬¹ýµãB×÷¡ÑOµÄÇÐÏßDE£¬FΪÉäÏßBDÉÏÒ»µã£¬Á¬½ÓCF£®
£¨1£©ÇóÖ¤£º¡ÏCBE=¡ÏA£»
£¨2£©Èô¡ÑOµÄÖ±¾¶Îª5£¬BF=2£¬tanA=2£¬ÇóCFµÄ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÒÑÖª¶þ´Îº¯ÊýµÄͼÏóµÄ¶¥µãÔÚÔ­µãO£¬ÇÒ¾­¹ýµãA£¨1£¬$\frac{1}{4}$£©£®
£¨1£©Çó´Ëº¯ÊýµÄ½âÎöʽ£»
£¨2£©½«¸ÃÅ×ÎïÏßÑØ×ÅyÖáÏòÉÏÆ½Òƺ󶥵ãÂäÔÚµãP´¦£¬Ö±Ïßx=2·Ö±ð½»Ô­Å×ÎïºÍÐÂÅ×ÎïÏßÓÚµãMºÍN£¬ÇÒS¡÷PMN=$3\sqrt{2}$£¬Çó£ºMNµÄ³¤ÒÔ¼°Æ½ÒƺóÅ×ÎïÏߵĽâÎöʽ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸