【题目】有这样一个问题:探究函数的图象与性质,小李根据学习函数的经验,对函数的图象与性质进行了探究.
下面是小李探究的过程,请补充完整:
(1)函数的自变量的取值范围是______;
(2)下表是与的几组对应值:
… | 0 | 2 | 3 | 4 | 5 | … | ||||
… | 0 | 5 | 3 | 2 | … |
则的值为_______;
(3)如图所示,在平面直角坐标系中,根据描出的点,请补全此函数的图象;
(4)观察图象,写出该函数的一条性质_______;
(5)若函数的图象在函数的图象上方,直接写出的取值范围_______.
【答案】(1)x≠1;(2);(3)见解析;(4)当x>1或x<1时,y随x增大而减小;(5)-1<x<1或x>3.
【解析】
(1)根据分式有意义分母不为零求解即可;
(2)把x=-2代入解析式计算即可;
(3)用平滑的曲线连接描出的点即可;
(4)根据函数图象可判断出增减性;
(5)画出两函数图象,根据图象写出x的取值范围即可.
解:(1)由题意得:x-1≠0,即x≠1,
故函数的自变量的取值范围是x≠1;
(2)当x=-2时,,
即;
(3)函数图象如图所示:
(4)由函数图象可知:当x>1或x<1时,y随x增大而减小;
(5)如图,函数的图象与函数的图象的交点为(-1,-1),(3,3),
所以函数的图象在函数的图象上方时,的取值范围为:-1<x<1或x>3.
科目:初中数学 来源: 题型:
【题目】某公司计划从甲、乙两种产品中选择一种生产并销售,每年产销件.已知产销两种产品的有关信息如下表:
产品 | 每件售价(万元) | 每件成本(万元) | 每年其他费用(万元) | 每年最大产销量(件) |
甲 | 6 | 20 | 200 | |
乙 | 30 | 20 | 80 |
其中为常数,且.
(1)若产销甲、乙两种产品的年利润分别为万元、万元,直接写出、与的函数关系式(写出自变量的取值范围);
(2)分别求出产销两种产品的最大年利润;
(3)为获得最大年利润,该公司应该选择产销哪种产品?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,已知□ABCD,AB//x轴,AB=6,点A的坐标为(1,-4),点D的坐标为(-3,4),点B在第四象限,点P是□ABCD边上的一个动点.
(1)若点P在边BC上,PD=CD,求点P的坐标.
(2)若点P在边AB,AD上,点P关于坐标轴对称的点Q落在直线y=x-1上,求点P的坐标.
(3)若点P在边AB,AD,CD上,点G是AD与y轴的交点,如图2,过点P作y轴的平行线PM,过点G作x轴的平行线GM,它们相交于点M,将△PGM沿直线PG翻折,当点M的对应点落在坐标轴上时,求点P的坐标(直接写出答案).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,菱形的顶点为坐标原点,且与反比例函数的图象相交于,两点,且点的纵坐标为,已知点,则的值为( ).
A.B.C.9D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个盒子里装有两个红球,两个白球和一个蓝球,这些球除颜色外都相同.从中随机摸出一个球,记下颜色后放回,再从中随机摸出一个球,两次摸到的球的颜色能配成紫色(红色和蓝色能配成紫色)的概率为( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在学习《圆》这一单元时,我们学习了圆周角定理的推论:圆内接四边形的对角互补;事实上,它的逆命题:对角互补的四边形的四个顶点共圆,也是一个真命题.在图形旋转的综合题中经常会出现对角互补的四边形,那么,我们就可以借助“对角互补的四边形的四个顶点共圆”,然后借助圆的相关知识来解决问题,例如:
已知:是等边三角形,点是内一点,连接,将线段绕逆时针旋转得到线段,连接,,,并延长交于点.当点在如图所示的位置时:
(1)观察填空:
①与全等的三角形是________;
②的度数为
(2)利用题干中的结论,证明:,,,四点共圆;
(3)直接写出线段,,之间的数量关系.____________________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,若BF=6,AB=4,则AE的长为( )
A. B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:三角形ABC中,∠A=90°,AB=AC,D为BC的中点.
(1)如图,E、F分别是AB、AC上的点,且BE=AF,求证:△DEF为等腰直角三角形.
(2)若E、F分别为AB,CA延长线上的点,仍有BE=AF,其他条件不变,那么,△DEF是否仍为等腰直角三角形?画出图形,写出结论不证明.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com