精英家教网 > 初中数学 > 题目详情

【题目】如图,已知抛物线yx24x轴交于点AB(点A位于点B的左侧),C为顶点,直线yx+m经过点A,与y轴交于点D

1)求线段AD的长;

2)沿直线AD方向平移该抛物线得到一条新拋物线,设新抛物线的顶点为C',若点C'在反比例函数x0)的图象上.求新抛物线对应的函数表达式.

【答案】1;(2

【解析】

1)通过解方程求出点A的坐标,由此进一步求出的值,从而得出D点坐标,最后根据勾股定理计算即可;

2)设新抛物线对应的函数表达式为,根据题意求出直线CC′的解析式,由此进一步求出C′坐标,据此再加以计算求解即可.

1)由得,

∵点A位于点B的左侧,

A(0),

∵直线经过点A

m2

∴点D的坐标为(02),

AD

2)设新抛物线对应的函数表达式为:

C'(mn),

CC′平行于直线AD,且经过C(04),

∴直线CC′的解析式为:

∵点C'在反比例函数)的图象上,

解得:

∴新抛物线对应的函数表达式为

∴新抛物线对应的函数表达式为:.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】若二次函数的图象与轴分别交于点,且过点.

1)求二次函数表达式;

2)若点为抛物线上第一象限内的点,且,求点的坐标;

3)在抛物线上(下方)是否存在点,使?若存在,求出点轴的距离;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,广安市防洪指挥部发现渠江边一处长400米,高8米,背水坡的坡角为45°的防洪大堤(横截面为梯形ABCD)急需加固.经调查论证,防洪指挥部专家组制定的加固方案是:背水坡面用土石进行加固,并使上底加宽2米,加固后,背水坡EF的坡比i=1:2.

(1)求加固后坝底增加的宽度AF的长;

(2)求完成这项工程需要土石多少立方米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB为⊙O的直径,CD为⊙O上不同于AB的两点,∠ABD2BAC,过点CCEDBDB的延长线于点E,直线ABCE交于点F

1)求证:CF为⊙O的切线;

2)填空:

①若AB4,当OBBF时,BE______

②当∠CAB的度数为______时,四边形ACFD是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列函数中,函数值y随自变量x增大而减小的是(  )

A.y2xB.

C.D.y=﹣x2+2x1x>1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在数学课上,老师提出如下问题:

尺规作图:过直线外一点作已知直线的平行线.

已知:直线l及其外一点A

求作:l的平行线,使它经过点A

小云的作法如下:

(1)在直线l上任取一点B

(2)B为圆心,BA长为半径作弧,交直线l于点C

(3)分别以AC为圆心,BA长为半径作弧,两弧相交于点D

(4)作直线AD.直线AD即为所求.

小云作图的依据是_______________________________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,中, 绕点顺时针旋转60°到点,点与点关于直线对称,连接

(1)依题意补全图形:

(2)判断的形状,并证明你的结论;

(3)请问在直线上是否存在点.使得恒成立若存在,请用文字描述出点的准确位置,并画图证明;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点O为坐标原点,直线yx m y轴的正半轴于点A,交x轴的正半轴于点B,过点A的直线AFx轴的负半轴于点F,∠AFO=45°

1)求∠FAB的度数;

2)点 P是线段OB上一点,过点P PQOB交直线 FA于点Q,连接 BQ,取 BQ的中点C,连接APACCP,过点C CRAP于点R,设 BQ的长为dCR的长为h,求d h的函数关系式(不要求写出自变量h的取值范围);

3)在(2)的条件下,过点 C CEOB于点ECE AB于点D,连接 AE,∠AEC=2DAPEP=2,作线段 CD 关于直线AB的对称线段DS,求直线PS与直线 AF的交点K的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,ABC是等腰直角三角形,BAC= 90°,AB=AC,四边形ADEF是正方形,点B、C分别在边AD、AF上,此时BD=CF,BDCF成立.

1ABC绕点A逆时针旋转θ(0°θ<90°)时,如图2,BD=CF成立吗?若成立,请证明;若不成立,请说明理由.

2ABC绕点A逆时针旋转45°时,如图3,延长DB交CF于点H.

求证:BDCF;

当AB=2,AD=3时,求线段DH的长.

查看答案和解析>>

同步练习册答案