精英家教网 > 初中数学 > 题目详情

【题目】二次函数y=ax2+bx+c(a≠0)的大致图象如图,关于该二次函数,下列说法错误的是(

A.函数有最小值
B.当﹣1<x<3时,y>0
C.当x<1时,y随x的增大而减小
D.对称轴是直线x=1

【答案】B
【解析】解:A、∵抛物线开口向上,
∴函数有最小值,故本选项正确;
B、当﹣1<x<3时,y<0,故本选项错误;
C、∵抛物线开口向上,
∴当x<1时,y随x的增大而减小,故本选项正确;
D、∵抛物线与x轴的交点坐标为(﹣1,0)、(3,0),
∴抛物线的对称轴为直线x=1,故本选项正确.
故选B.
【考点精析】本题主要考查了二次函数的性质的相关知识点,需要掌握增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图所示,OE,OD分别平分∠AOC和∠BOC,

(1)如果∠AOB=90°,BOC=38°,求∠DOE的度数;

(2)如果∠AOB=α,BOC=β(α、β均为锐角,αβ),其他条件不变,求∠DOE;

(3)从(1)、(2)的结果中,你发现了什么规律,请写出来.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某公司拟为贫困山区建一所希望小学,甲、乙两个工程队提交了投标方案,若独立完成该项目,则甲工程队所用时间是乙工程队的1.5倍;若甲、乙两队合作完成该项目,则共需72天.

(1)甲、乙两队单独完成建校工程各需多少天?

(2)若由甲工程队单独施工,平均每天的费用为0.8万元,为了缩短工期,该公司选择了乙工程队,但要求其施工的总费用不能超过甲工程队,求乙工程队平均每天的施工费用最多为多少万元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AD∥BC,AF平分∠BAD交BC于点F,BE平分∠ABC交AD于点E.求证:

(1)△ABF是等腰三角形;
(2)四边形ABFE是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知△ABC是边长为4的等边三角形,BC在x轴上,点D为BC的中点,点A在第一象限内,AB与y轴的正半轴交与点E,已知点B(﹣1,0).
(1)点A的坐标: , 点E的坐标:
(2)若二次函数y=﹣ x2+bx+c过点A、E,求此二次函数的解析式;
(3)P是AC上的一个动点(P与点A、C不重合)连结PB、PD,设l是△PBD的周长,当l取最小值时,求点P的坐标及l的最小值并判断此时点P是否在(2)中所求的抛物线上,请充分说明你的判断理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解方程

1

2

3

4.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在边长为2 的正方形ABCD中,点E为AD边的中点,将△ABE沿BE翻折,使点A落在点A′处,作射线EA′,交BC的延长线于点F,则CF=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,抛物线y=ax2+bx+3(a≠0)与x轴、y轴分别交于点A(﹣1,0)、B(3,0)、点C三点.

(1)试求抛物线的解析式;
(2)点D(2,m)在第一象限的抛物线上,连接BC,BD.试问,在对称轴左侧的抛物线上是否存在一点P,满足∠PBC=∠DBC?如果存在,请求出点P点的坐标;如果不存在,请说明理由;
(3)如图2,在(2)的条件下,将△BOC沿x轴正方向以每秒1个单位长度的速度向右平移,记平移后的三角形为△B′O′C′.在平移过程中,△B′O′C′与△BCD重叠的面积记为S,设平移的时间为t秒,试求S与t之间的函数关系式?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】麒麟区第七中学现有一块空地ABCD如图所示,现计划在空地上种草皮,经测量,∠B=90°AB=3mBC=4mCD=13mAD=12m

1)求出空地ABCD的面积?

2)若每种植1平方米草皮需要300元,问总共需投入多少元?

查看答案和解析>>

同步练习册答案