【题目】如图1,在中,,,点是边上的一个动点(不与,重合),以为边作,交边于点.设,.今天我们将根据学习函数的经验,研究函数值随自变量的变化而变化的规律.
下面是某同学做的一部分研究结果,请你一起参与解答:
(1)自变量的取值范围是 ;
(2)通过计算,得到与的几组值,如下表:
0.5 | 1 | 1.5 | 2 | 3 | 4 | 4.5 | 5 | 5.5 | |
3.3125 | 2.75 | 2.3125 | 2 | 2.3125 | 2.75 | 3.3125 |
请你补全表格;
(3)在如图2所示的平面直角坐标系中,画出该函数的大致图象;
(4)根据图象,请写出该函数的一条性质.
【答案】(1) (2)1.75;2 (3)见解析 (4)当时,随的增大而减小;当时,随的增大而增大.
【解析】
(1)根据题意,直接写出x的取值范围,即可;
(2)先证BAD~CDE,可得,进而得y关于x的解析式,分别求出当x=3时,当x=4时,y的值,即可;
(3)根据函数解析式或表格中的数据与自变量的取值范围,画出函数图象,即可;
(4)根据二次函数的性质,即可得到答案.
(1)∵点是边上的一个动点(不与,重合),,
∴,
故答案是:;
(2)∵∠B+∠BAD=∠ADE+∠CDE,,
∴∠BAD=∠CDE,
∵,
∴∠B=∠C,
∴BAD~CDE,
∴,即:,
∴,
∴当x=3时,y=1.75;当x=4时,y=2,
故答案是:1.75,2;
(3)函数图象如下:
(4)由函数的图象和性质可知:当时,随的增大而减小;当时,随的增大而增大.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,矩形ABCD的对角线BD经过坐标原点O,矩形的边分别平行于坐标轴,点A在函数(≠0,<0)的图象上,点C的坐标为(2,),则的值为( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线与轴、轴分别相交于点B、C,经过B、C两点的抛物线与轴的另一个交点为A,顶点为P,且对称轴为直线。点G是抛物线位于直线下方的任意一点,连接PB、GB、GC、AC .
(1)求该抛物线的解析式;
(2)求△GBC面积的最大值;
(3)连接AC,在轴上是否存在一点Q,使得以点P,B,Q为顶点的三角形与△ABC相似?若存在,求出点Q的坐标;若不存在,请说明理由。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知等边△ABC,顶点B(0,0),C(2,0),规定把△ABC先沿x轴绕着点C顺时针旋转,使点A落在x轴上 ,称为一次变换,再沿x轴绕着点A顺时针旋转,使点B落在x轴上 ,称为二次变换,……经过连续2017次变换后,顶点A的坐标是:
A. (4033, ) B. (4033,0) C. (4036, ) D. (4036,0)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图, AB 是 ⊙ O 的直径, C 是的中点, CE ⊥ AB 于 E , BD 交 CE 于 F .
(1)求证: CF=BF ;
(2)若 CD=6 ,AC=8 ,求 BE 、 CF 的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.如图,5×5正方形方格纸图中,点A,B都在格点处.
(1)请在图中作等腰△ABC,使其底边AC=2,且点C为格点;
(2)在(1)的条件下,作出平行四边形ABDC,且D为格点,并直接写出平行四边形ABDC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】寒假中,某校七年级开展“阅读经典,读一本好书”的活动.为了解学生阅读情况,从全年级学生中随机抽取了部分学生调查读书种类情况,并进行统计分析,绘制了如下不完整的统计图表:
读书种类情况统计表
种类 | 频数 | 百分比 |
A.科普类 | a | 32% |
B.文学类 | 20 | 40% |
C.艺术类 | 8 | b |
D.其他类 | 6 | 12% |
请根据以上信息,解答下列问题:
(1)填空:a= ,b= ,并补全条形统计图;
(2)若绘制“阅读情况扇形统计图”,则“艺术类”所对应扇形的圆心角度数为 °;
(3)若该校七年级共有800人,请估计全年级在本次活动中读书种类为“艺术类”的学生人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD的对角线AC、BD交于点O,已知O是AC的中点,AE=CF,DF∥BE.
(1)求证:△BOE≌△DOF;
(2)若OD=OC,则四边形ABCD是什么特殊四边形?请直接给出你的结论,不必证明.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com