精英家教网 > 初中数学 > 题目详情

【题目】如图,一次函数y1x+4的图象与反比例函数y2的图象交于A(﹣1a),B两点,与x轴交于点C

1)求k

2)根据图象直接写出y1y2时,x的取值范围.

3)若反比例函数y2与一次函数y1x+4的图象总有交点,求k的取值.

【答案】1-3;(2)﹣3x<﹣1;(3k≥﹣4k0

【解析】

1)把点A坐标代入一次函数关系式可求出a的值,确定点A的坐标,再代入反比例函数关系式可求出k的值,

2)一次函数与反比例函数联立,可求出交点B的坐标,再根据图象可得出当y1y2时,x的取值范围.

3)若反比例函数y2与一次函数y1x+4的图象总有交点,就是x2+4xk0有实数根,根据根的判别式求出k的取值范围.

1)一次函数y1x+4的图象过A(﹣1a),

a=﹣1+43

A(﹣13)代入反比例函数y2得,

k=﹣3

2)由(1)得反比例函数,由题意得,

,解得,

∴点B(﹣31

y1y2,即一次函数的图象位于反比例函数图象上方时,

自变量的取值范围为:﹣3x<﹣1

3)若反比例函数y2与一次函数y1x+4的图象总有交点,

即,方程x+4有实数根,也就是x2+4xk0有实数根,

16+4k0

解得,k≥﹣4

k0

k的取值范围为:k≥﹣4k0

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图所示,图中的小方格都是边长为1的正方形, 是以点O为位似中心的位似图形,它们的顶点都在小正方形的顶点上.

画出位似中心点O

直接写出的位似比;

以位似中心O为坐标原点,以格线所在直线为坐标轴建立平面直角坐标系,并直接写出各顶点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线yaxm2+2mm0)经过原点,其顶点为P,与x轴的另一交点为A

1P点坐标为   A点坐标为   ;(用含m的代数式表示)

2)求出am之间的关系式;

3)当m0时,若抛物线yaxm2+2m向下平移m个单位长度后经过点(11),求此抛物线的表达式;

4)若抛物线yaxm2+2m向下平移|m|个单位长度后与x轴所截的线段长,与平移前相比有什么变化?请直接写出结果.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,点EAD的中点,延长CEBA的延长线于点F

1)求证:ABAF

2)若BC2AB,∠BCD100°,求∠ABE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠B=90°,AC=10BC=6,线段AC的垂直平分线MN分别交ACABMN两点,则△BCN的面积是(  )

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数yax2+bx+ca≠0)的图象如图所示,有下列结论:①abc0;②2a+b0;③若m为任意实数,则a+bam2+bm;④ab+c0;⑤若ax12+bx1ax22+bx2,且x1≠x2,则x1+x22.其中,正确结论的个数为(  )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】红红和娜娜按下图所示的规则玩“锤子、剪刀、布”游戏,

游戏规则:若一人出“剪刀”,另一人出“布”,则出“剪刀”者胜;若一人出“锤子”,另一人出“剪刀”,则出“锤子”者胜;若一人出“布”,另一人出“锤子”,则出“布”者胜,若两人出相同的手势,则两人平局.

下列说法中错误的是

A. 红红不是胜就是输,所以红红胜的概率为

B. 红红胜或娜娜胜的概率相等

C. 两人出相同手势的概率为

D. 娜娜胜的概率和两人出相同手势的概率一样

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC是边长为3的等边三角形,BDC是等腰三角形,且BDC=120°.以D为顶点作一个60°角,使其两边分别交AB于点M,交AC于点N,连接MN,则AMN的周长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等边三角形边长是定值,点是它的外心,过点任意作一条直线分别交于点,将沿直线折叠,得到,若分别交于点,连接,则下列判断错误的是(

A.≌△

B.的周长是一个定值

C.四边形的面积是一个定值

D.四边形的面积是一个定值

查看答案和解析>>

同步练习册答案