【题目】如图,一次函数y1=x+4的图象与反比例函数y2=的图象交于A(﹣1,a),B两点,与x轴交于点C.
(1)求k.
(2)根据图象直接写出y1>y2时,x的取值范围.
(3)若反比例函数y2=与一次函数y1=x+4的图象总有交点,求k的取值.
【答案】(1)-3;(2)﹣3<x<﹣1;(3)k≥﹣4且k≠0.
【解析】
(1)把点A坐标代入一次函数关系式可求出a的值,确定点A的坐标,再代入反比例函数关系式可求出k的值,
(2)一次函数与反比例函数联立,可求出交点B的坐标,再根据图象可得出当y1>y2时,x的取值范围.
(3)若反比例函数y2=与一次函数y1=x+4的图象总有交点,就是x2+4x﹣k=0有实数根,根据根的判别式求出k的取值范围.
(1)一次函数y1=x+4的图象过A(﹣1,a),
∴a=﹣1+4=3,
∴A(﹣1,3)代入反比例函数y2=得,
k=﹣3;
(2)由(1)得反比例函数,由题意得,
,解得,,,
∴点B(﹣3,1)
当y1>y2,即一次函数的图象位于反比例函数图象上方时,
自变量的取值范围为:﹣3<x<﹣1;
(3)若反比例函数y2=与一次函数y1=x+4的图象总有交点,
即,方程=x+4有实数根,也就是x2+4x﹣k=0有实数根,
∴16+4k≥0,
解得,k≥﹣4,
∵k≠0,
∴k的取值范围为:k≥﹣4且k≠0.
科目:初中数学 来源: 题型:
【题目】如图所示,图中的小方格都是边长为1的正方形,与 是以点O为位似中心的位似图形,它们的顶点都在小正方形的顶点上.
画出位似中心点O;
直接写出与的位似比;
以位似中心O为坐标原点,以格线所在直线为坐标轴建立平面直角坐标系,并直接写出各顶点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=a(x﹣m)2+2m(m≠0)经过原点,其顶点为P,与x轴的另一交点为A.
(1)P点坐标为 ,A点坐标为 ;(用含m的代数式表示)
(2)求出a,m之间的关系式;
(3)当m>0时,若抛物线y=a(x﹣m)2+2m向下平移m个单位长度后经过点(1,1),求此抛物线的表达式;
(4)若抛物线y=a(x﹣m)2+2m向下平移|m|个单位长度后与x轴所截的线段长,与平移前相比有什么变化?请直接写出结果.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形ABCD中,点E为AD的中点,延长CE交BA的延长线于点F.
(1)求证:AB=AF;
(2)若BC=2AB,∠BCD=100°,求∠ABE的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠B=90°,AC=10,BC=6,线段AC的垂直平分线MN分别交AC、AB于M、N两点,则△BCN的面积是( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①abc>0;②2a+b=0;③若m为任意实数,则a+b>am2+bm;④a﹣b+c>0;⑤若ax12+bx1=ax22+bx2,且x1≠x2,则x1+x2=2.其中,正确结论的个数为( )
A.1B.2C.3D.4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】红红和娜娜按下图所示的规则玩“锤子、剪刀、布”游戏,
游戏规则:若一人出“剪刀”,另一人出“布”,则出“剪刀”者胜;若一人出“锤子”,另一人出“剪刀”,则出“锤子”者胜;若一人出“布”,另一人出“锤子”,则出“布”者胜,若两人出相同的手势,则两人平局.
下列说法中错误的是
A. 红红不是胜就是输,所以红红胜的概率为
B. 红红胜或娜娜胜的概率相等
C. 两人出相同手势的概率为
D. 娜娜胜的概率和两人出相同手势的概率一样
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC是边长为3的等边三角形,△BDC是等腰三角形,且∠BDC=120°.以D为顶点作一个60°角,使其两边分别交AB于点M,交AC于点N,连接MN,则△AMN的周长为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,等边三角形边长是定值,点是它的外心,过点任意作一条直线分别交于点,将沿直线折叠,得到,若分别交于点,连接,则下列判断错误的是( )
A.△≌△
B.的周长是一个定值
C.四边形的面积是一个定值
D.四边形的面积是一个定值
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com