精英家教网 > 初中数学 > 题目详情
如图,⊙O是△ABC的外接圆,AB为直径,∠BAC的平行线交⊙O与点D,过点D的切线分别交AB、AC的延长线与点E、F.

(1)求证:AF⊥EF.
(2)小强同学通过探究发现:AF+CF=AB,请你帮忙小强同学证明这一结论.
(1)首先连接OD,由EF是⊙O的切线,可得OD⊥EF,由∠BAC的平行线交⊙O与点D,易证得OD⊥BC,即可得BC∥EF,由AB为直径,根据直径所对的圆周角是直角,可得AC⊥BC,继而证得AF⊥EF。
(2)首先连接BD并延长,交AF的延长线于点H,连接CD,易证得△ADH≌△ADB,△CDF≌△HDF,继而证得AF+CF=AB。 

分析:(1)首先连接OD,由EF是⊙O的切线,可得OD⊥EF,由∠BAC的平行线交⊙O与点D,易证得OD⊥BC,即可得BC∥EF,由AB为直径,根据直径所对的圆周角是直角,可得AC⊥BC,继而证得AF⊥EF。
(2)首先连接BD并延长,交AF的延长线于点H,连接CD,易证得△ADH≌△ADB,△CDF≌△HDF,继而证得AF+CF=AB。 
证明:(1)连接OD,

∵EF是⊙O的切线,∴OD⊥EF。
∵AD平分∠BAC,∴∠CAD=∠BAD。
。∴OD⊥BC。∴BC∥EF。
∵AB为直径,∴∠ACB=90°,即AC⊥BC。
∴AF⊥EF。
(2)连接BD并延长,交AF的延长线于点H,连接CD,

∵AB是直径,∴∠ADB=90°,即AD⊥BH。
∴∠ADB=∠ADH=90°,
∵在△ABD和△AHD中,
∴△ABD≌△AHD(ASA)。∴AH=AB。
∵EF是切线,∴∠CDF=∠CAD,∠HDF=∠EDB=∠BAD。∴∠EDF=∠HDF。
∵DF⊥AF,DF是公共边,∴△CDF≌△HDF(ASA)。∴FH=CF。
∴AF+CF=AF+FH=AH=AB,即AF+CF=AB。
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图1,Rt△ABC中,∠ACB=90°,AB=5,BC=3,点D在边AB的延长线上,BD=3,过点D作DE⊥AB,与边AC的延长线相交于点E,以DE为直径作⊙O交AE于点F.

(1)求⊙O的半径及圆心O到弦EF的距离;
(2)连接CD,交⊙O于点G(如图2).求证:点G是CD的中点.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,⊙O的直径AB=10,C、D是圆上的两点,且.设过点D的切线ED交AC的延长线于点F.连接OC交AD于点G.

(1)求证:DF⊥AF.
(2)求OG的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

(2013年四川广安3分)如图,如果从半径为5cm的圆形纸片上剪去圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的高是   cm.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,点C是⊙O的直径AB延长线上的一点,且有BO=BD=BC.

(1)求证:CD是⊙O的切线;
(2)若半径OB=2,求AD的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在半径为1的⊙O中,∠AOB=45°,则sinC的值为
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在⊙O中,已知∠OAB=22.5°,则∠C的度数为
A.135°B.122.5°C.115.5°D.112.5°

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

点O在直线AB上,点A1,A2,A3,……在射线OA上,点B1,B2,B3,……在射线OB上,图中的每一个实线段和虚线段的长均为1个单位长度.一个动点M从O点出发,按如图所示的箭头方向沿着实线段和以点O为圆心的半圆匀速运动,速度为每秒1个单位长度.按此规律,则动点M到达A101点处所需时间为       秒.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在⊙O中,OC⊥弦AB于点C,AB=4,OC=1,则OB的长是
A.B.C.D.

查看答案和解析>>

同步练习册答案