【题目】如图所示,在平面直角坐标系中,A(﹣1,4),B(﹣3,3),C(﹣2,1)
(1)已知△A′B′C′与△ABC关于x轴对称,画出△A′B′C′,并写出以下各点坐标:A′ ;B′ ;C′ .
(2)在y轴上作出点P(在图中显示作图过程),使得PA+PC的值最小,并写出点P的坐标 .
科目:初中数学 来源: 题型:
【题目】如图,小李从市场上买回一块矩形铁皮,他将此矩形铁皮的四个角各剪去一个边长为1米的正方形后,剩下的部分刚好能围成一个容积为35 m3的无盖长方体箱子,且此长方体箱子的底面长比宽多2m,现己知购买这种铁皮每平方米需30元钱,问小李购回这张矩形铁皮共花了多少元钱?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c经过点A,B.
(1)求点B的坐标和抛物线的解析式;
(2)M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N.
①点M在线段OA上运动,若以B,P,N为顶点的三角形与△APM相似,求点M的坐标;
②点M在x轴上自由运动,若三个点M,P,N中恰有一点是其它两点所连线段的中点(三点重合除外),则称M,P,N三点为“共谐点”.请直接写出使得M,P,N三点成为“共谐点”的m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,中,,,,,将绕着点旋转一定的角度,得到.
(1)若点为边上中点,连接,则线段的范围为________.
(2)如图,当直角顶点在边上时,延长,交边于点,请问线段、、具有怎样的数量关系,请写出探索过程.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知:四边形ABCD中,对角线BD平分∠ABC,∠ACB=74°,∠ABC=46°,且∠BAD+∠CAD=180°,那么∠BDC的度数为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,已知CF是△ABC的外角∠ACE的角平分线,D为CF上一点,且DA=DB.
(1)求证:∠ACB=∠ADB;
(2)求证:AC+BC<2BD;
(3)如图2,若∠ECF=60°,证明:AC=BC+CD.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线与轴相交于、两点(其中为坐标原点),过点作直线轴于点,交抛物线于点,点关于抛物线对称轴的对称点为(其中、不重合),连接交轴于点,连接和.
(1)时,求抛物线的解析式和的长;
如图时,若,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,线段AB 是⊙O的直径,弦CD⊥AB于点H,点M是弧CBD 上任意一点,AH=2,CH=4.
(1)求⊙O 的半径r 的长度;
(2)求sin∠CMD;
(3)直线BM交直线CD于点E,直线MH交⊙O 于点 N,连接BN交CE于点 F,求HEHF的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线y=ax2+bx+c的顶点坐标为(2,9),与y轴交于点A(0,5),与x轴交于点E、B.
(1)求二次函数y=ax2+bx+c的表达式;
(2)过点A作AC平行于x轴,交抛物线于点C,点P为抛物线上的一点(点P在AC上方),作PD平行于y轴交AB于点D,问当点P在何位置时,四边形APCD的面积最大?并求出最大面积;
(3)若点M在抛物线上,点N在其对称轴上,使得以A、E、N、M为顶点的四边形是平行四边形,且AE为其一边,求点M、N的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com