【题目】AD是△ABC的边BC上的中线,AB=6,AC=4,则边BC的取值范围是 , 中线AD的取值范围是 .
【答案】2<BC<10;1<AD<5
【解析】解:∵在△ABC中,AB=6,AC=4, ∴6﹣4<BC<6+4,
∴2<BC<10;
延长AD到E,使AD=DE,连接BE,如图所示:
∵AD为中线,
∴BD=DC,
在△ADC和△EDB中, ,
∴△ADC≌△EDB(SAS),
∴AC=BE=4,
在△ABE中,AB=6,BE=4,
∴6﹣4<AE<6+4,
∴2<2AD<10,
∴1<AD<5,
故答案为:2<BC<10,1<AD<5.
根据三角形的三边关系定理求出BC的范围即可;延长AD到E,使AD=DE,连接BE,证三角形全等,推出BE=AC=6,在三角形ABE中,根据三角形的三边关系定理求出即可.
科目:初中数学 来源: 题型:
【题目】整式的加减运算:
(1)化简:-(x2+y2)+[-3xy-(x2-y2)];
(2)先化简,再求值:2(x2y+xy)-(x2y-xy)-4xy-x2y)其中x=1,y=-2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y=x2的图像向右平移2个单位,得到新的函数图像的表达式是( )
A.y=x2﹣2
B.y=(x﹣2)2
C.y=x2+2
D.y=(x+2)2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,AB=1,BC=2,BC在x轴上,反比例函数的图象经过点A.一次函数y=kx-2的图象经过A、C两点,且与y轴交于点E.
(1)直接写出点E、C的坐标;
(2)求反比例函数的解析式;
(3)根据图象写出当x>0,且一次函数的值大于反比例函数的值时,x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,AB=AC,BD⊥AC于D,CE⊥AB于E,BD和CE交于O,AO的延长线交BC于F,则图中全等的直角三角形有( )
A.3对
B.4对
C.5对
D.6对
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com