精英家教网 > 初中数学 > 题目详情

【题目】如图,用细线悬挂一个小球,小球在竖直平面内的AC两点间来回摆动,A点与地面距离AN=14cm,小球在最低点B时,与地面距离BM=5cm,AOB=66°,求细线OB的长度.(参考数据:sin66°≈0.91,cos66°≈0.40,tan66°≈2.25)

【答案】15cm

【解析】

试题设细线OB的长度为xcm,作ADOBD,证出四边形ANMD是矩形,得出AN=DM=14cm,求出OD=x-9,在RtAOD中,由三角函数得出方程,解方程即可.

试题解析:设细线OB的长度为xcm,作ADOBD,如图所示:

∴∠ADM=90°,

∵∠ANM=DMN=90°,

∴四边形ANMD是矩形,

AN=DM=14cm,

DB=14﹣5=9cm,

OD=x﹣9,

RtAOD中,cosAOD=

cos66°==0.40,

解得:x=15,

OB=15cm.

型】解答
束】
20

【题目】已知:如图,在半径为中,是两条直径,的中点,的延长线交于点,且,连接.

1)求证:;

2)求的长.

【答案】1)证明见解析; 2EM=4.

【解析】

1)连接ACEB点,那么只需要求出△AMC和△EMB相似,即可求出结论,根据圆周角定理可推出它们的对应角相等,即可得△AMC∽△EMB

2)根据圆周角定理,结合勾股定理,可以推出EC的长度,根据已知条件推出AMBM的长度,然后结合(1)的结论,很容易就可求出EM的长度.

1)连接ACEB

∵∠A=BEC,∠B=ACM,∴△AMC∽△EMB,∴,∴AMBM=EMCM

2)∵DC是⊙O的直径,∴∠DEC=90°,∴DE2+EC2=DC2

DECD=8,且EC为正数,∴EC=7

MOB的中点,∴BM=2AM=6

AMBM=EMCM=EMECEM=EM7EM=12,且EMMC,∴EM=4

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,B=90°,AC=60,AB=30。点D是AC上的动点,过D作DFBC于F,再过F作FE//AC,交AB于E。设CD=x,DF=y.

(1)求y与x的函数关系式;

(2)当四边形AEFD为菱形时,求x的值;

(3)当FED是直角三角形时,求x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,已知是等腰直角三角形,,点DBC的中点作正方形DEFG,使点AC分别在DGDE上,连接AEBG

试猜想线段BGAE的数量关系是______

将正方形DEFG绕点D逆时针方向旋转

判断中的结论是否仍然成立?请利用图2证明你的结论;

,当AE取最大值时,求AF的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在正方形ABCD中,动点EF分别从DC两点同时出发,以相同的速度在直线DCCB上移动.

1)如图1,当点E在边DC上自DC移动,同时点F在边CB上自CB移动时,连接AEDF交于点P,请你写出AEDF的数量关系和位置关系,并说明理;

2)如图2,当EF分别在边CDBC的延长线上移动时,连接AEDF,(1)中的结论还成立吗?(请你直接回答,不需证明);连接AC,求ACE为等腰三角形时CECD的值;

3)如图3,当EF分别在直线DCCB上移动时,连接AEDF交于点P,由于点EF的移动,使得点P也随之运动,请你画出点P运动路径的草图.AD=2,试求出线段CP的最大值.

1 2 3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某旅行社推出一条成本价为500元/人的省内旅游线路.游客人数(人/月)与旅游报价(元/人)之间的关系为,已知:旅游主管部门规定该旅游线路报价在800元/人~1200元/人之间.

(1)要将该旅游线路每月游客人数控制在200人以内,求该旅游线路报价的取值范围;

(2)求经营这条旅游线路每月所需要的最低成本;

(3)当这条旅游线路的旅游报价为多少时,可获得最大利润?最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数的图象与x轴交于AB两点,顶点为C

AB两点的坐标分别为时,求ab满足的关系式.

若该函数图象的对称轴是直线,且为等腰直角三角形.

①求该二次函数的解析式用只含a的式子表示

②在范围内任取三个自变量,所对应的三个函数值分别为,若以为长度的三条线段能围成三角形,求a的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在足够大的空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,其中AD≤MN,已知矩形菜园的一边靠墙,另三边一共用了100米木栏.

(1)若a=20,所围成的矩形菜园的面积为450平方米,求所利用旧墙AD的长;

(2)求矩形菜园ABCD面积的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,两棵树的高度分别为AB=6 m,CD=8 m,两树的根部间的距离AC=4 m,小强沿着正对这两棵树的方向从左向右前进,如果小强的眼睛与地面的距离为1.6 m,当小强与树AB的距离小于多少时,就不能看到树CD的树顶D?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数ykx+bk0)与反比例函数ya0)的图象在第一象限交于AB两点,A点的坐标为(m4),B点的坐标为(32),连接OAOB,过BBDy轴,垂足为D,交OAC.若OCCA

1)求一次函数和反比例函数的表达式;

2)求△AOB的面积;

3)在直线BD上是否存在一点E,使得△AOE是直角三角形,求出所有可能的E点坐标.

查看答案和解析>>

同步练习册答案