精英家教网 > 初中数学 > 题目详情

【题目】如图,一次函数ykx+bk0)与反比例函数ya0)的图象在第一象限交于AB两点,A点的坐标为(m4),B点的坐标为(32),连接OAOB,过BBDy轴,垂足为D,交OAC.若OCCA

1)求一次函数和反比例函数的表达式;

2)求△AOB的面积;

3)在直线BD上是否存在一点E,使得△AOE是直角三角形,求出所有可能的E点坐标.

【答案】1yy=﹣x+6;(2.(3E坐标为(﹣2)或(2)或(2)或(2).

【解析】

1)先利用待定系数法求出反比例函数解析式,进而确定出点A的坐标,再用待定系数法求出一次函数解析式;
2)过点AAFx轴于FOBG,先求出OB的解析式,进而求出AG,用三角形的面积公式即可得出结论.
3)分三种情形分别讨论求解即可解决问题;

解:(1)∵点B32)在反比例函数y的图象上,

a3×26

∴反比例函数的表达式为y

∵点A的纵坐标为4

∵点A在反比例函数y图象上,

A4),

,∴

∴一次函数的表达式为y=﹣x+6

2)如图1,过点AAFx轴于FOBG

B32),

∴直线OB的解析式为yx

G1),

A4),

AG413

SAOBSAOG+SABG×3×3

3)如图2中,

当∠AOE190°时,∵直线AC的解析式为yx

∴直线OE1的解析式为y=﹣x

y2时,x=﹣

E1(﹣2).

当∠OAE290°时,

直线OE1平行直线OE2

设直线OE2的解析式为y=﹣x+b

∴直线过点A4),则b=

∴直线OE2的解析式为y=﹣x+

y2时,x

E22).

当∠OEA90°时,

A4),∴OA=

ACOCCE

C2),

∴可得E32),E42),

综上所述,满足条件的点E坐标为(﹣2)或(2)或(2)或(2).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,用细线悬挂一个小球,小球在竖直平面内的AC两点间来回摆动,A点与地面距离AN=14cm,小球在最低点B时,与地面距离BM=5cm,AOB=66°,求细线OB的长度.(参考数据:sin66°≈0.91,cos66°≈0.40,tan66°≈2.25)

【答案】15cm

【解析】

试题设细线OB的长度为xcm,作ADOBD,证出四边形ANMD是矩形,得出AN=DM=14cm,求出OD=x-9,在RtAOD中,由三角函数得出方程,解方程即可.

试题解析:设细线OB的长度为xcm,作ADOBD,如图所示:

∴∠ADM=90°,

∵∠ANM=DMN=90°,

∴四边形ANMD是矩形,

AN=DM=14cm,

DB=14﹣5=9cm,

OD=x﹣9,

RtAOD中,cosAOD=

cos66°==0.40,

解得:x=15,

OB=15cm.

型】解答
束】
20

【题目】已知:如图,在半径为中,是两条直径,的中点,的延长线交于点,且,连接.

1)求证:;

2)求的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如果一个整数,将其末三位截去,这个末三位数与余下的数的7倍的差能被19整除,则这个数能被19整除,否则不能被19整除,能被19整除的我们称之为灵异数

46379,由能被19整除,能被19整除,是灵异数

请用上述规则判断524789115是否为灵异数

有一个首位数字是1的五位正整数,它的个位数字不为0且是千位数字的2倍,十位和百位上的数字之和为8,若这个数恰好是灵异数,请求出这个数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.

(1)求出y与x的函数关系式;

(2)当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元?

(3)设该文具店每周销售这种纪念册所获得的利润为w元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙OABC的外接圆,O点在BC边上,∠BAC的平分线交⊙O于点D,连接BDCD,过点DBC的平行线,与AB的延长线相交于点P

1)求证:PD是⊙O的切线;

2)求证:PBD∽△DCA

3)当AB=6AC=8时,求线段PB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两人进行羽毛球比赛,羽毛球飞行的路线为抛物线的一部分,如图,甲在点上正方处发出一球,羽毛球飞行的高度与水平距离之间满足函数表达式.已知点与球网的水平距离为,球网的高度为

1)当时,的值.通过计算判断此球能否过网.

2)若甲发球过网后,羽毛球飞行到点的水平距离为,离地面的高度为处时,乙扣球成功,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,OAx轴的负半轴上,OCy轴的正半轴上.

如图1,将矩形OABC绕点O顺时针方向旋转得到矩形,当点A的对应点落在BC边上时,求点的坐标;

如图,将矩形OABC绕点O顺时针方向旋得到矩形,当点B的对应点落在轴的正半轴上时,求点的坐标;

,如图3,设边BC交于点E,若,请直接写出的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1所示,将一个边长为2的正方形ABCD和一个长为2,宽为1的矩形CEFD拼在一起,构成一个大的矩形ABEF,现将小矩形CEFD绕点C顺时针旋转至CEFD′,旋转角为α

1)当点D′恰好落在EF边上时,求旋转角α的值;

2)如图2GBC中点,且0°<α90°,求证:GD′=ED

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】对于某一函数给出如下定义:若存在实数p,当其自变量的值为p时,其函数值等于p,则称p为这个函数的不变值.在函数存在不变值时,该函数的最大不变值与最小不变值之差q称为这个函数的不变长度.特别地,当函数只有一个不变值时,其不变长度q为零.例如:下图中的函数有0,1两个不变值,其不变长度q等于1.

(1)分别判断函数y=x-1,y=x-1,y=x2有没有不变值?如果有,直接写出其不变长度;

(2)函数y=2x2-bx.

①若其不变长度为零,求b的值;

②若1≤b≤3,求其不变长度q的取值范围;

(3) 记函数y=x2-2x(x≥m)的图象为G1,将G1沿x=m翻折后得到的函数图象记为G2,函数G的图象由G1G2两部分组成,若其不变长度q满足0≤q≤3,m的取值范围为 .

查看答案和解析>>

同步练习册答案