2£®Èçͼ£¬ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬Ö±Ïßy=x+1·Ö±ð½»x¡¢yÖáÓÚµãA¡¢B£¬½»Ë«ÇúÏß$y=\frac{k}{x}£¨k¡Ù0£©$ÓÚµãC£¨3£¬n£©£®Å×ÎïÏß$y=\frac{1}{2}{x^2}+bx+c$¹ýµãB£¬ÇÒÓë¸ÃË«ÇúÏß½»ÓÚµãD£¬µãDµÄ×Ý×ø±êΪ3£®
£¨1£©Çó¸ÃË«ÇúÏßÓëÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©ÈôµãEΪ¸ÃË«ÇúÏßÉÏÒ»µã£¬µãFΪ¸ÃÅ×ÎïÏßÉÏÒ»µã£¬ÇÒE¡¢FµÄ×Ý×ø±ê¾ùΪ2£¬ÇóÏß¶ÎEFµÄ³¤£»
£¨3£©Èô¶¯µãMÑØÖ±Ïß´ÓµãAÔ˶¯µ½µãC£¬ÔÙÑØË«ÇúÏß´ÓµãCÔ˶¯µ½µãD£¬¹ýµãM×÷MN¡ÍxÖᣬ½»Å×ÎïÏßÓÚµãN£®ÉèÏß¶ÎMNµÄ³¤¶ÈΪd£¬µãMµÄºá×ø±êΪm£¬Ö±½Óд³ödµÄ×î´óÖµ£¬ÒÔ¼°dËæmµÄÔö´ó¶ø¼õСʱmµÄȡֵ·¶Î§£®

·ÖÎö £¨1£©¸ù¾Ý×Ô±äÁ¿Ó뺯ÊýÖµµÄ¶ÔÓ¦¹ØÏµ£¬¿ÉµÃB¡¢C¡¢DµÄ×ø±ê£¬¸ù¾Ý´ý¶¨ÏµÊý·¨£¬¿ÉµÃº¯Êý½âÎöʽ£»
£¨2£©¸ù¾Ýº¯ÊýÖµ£¬¿ÉµÃÏàÓ¦×Ô±äÁ¿µÄÖµ£¬¸ù¾Ýº¯ÊýÖµÏàµÈµÄÁ½µã¼äµÄ¾àÀëÊǽϴóµÄºá×ø½ÏСµÄ¾ø¶ÔÖµ£¬¿ÉµÃ´ð°¸£»
£¨3£©¸ù¾Ý×Ô±äÁ¿ÏàµÈµÄÁ½µã¼äµÄ¾àÀëÊǽϴóµÄ×Ý×ø±ê¼õ½ÏСµÄ×Ý×ø±ê£¬¿ÉµÃº¯Êý¹ØÏµÊ½£¬¸ù¾Ý¶þ´Îº¯ÊýµÄÐÔÖÊ£¬¿ÉµÃ´ð°¸£®

½â´ð ½â£º£¨1£©µ±x=3ʱ£¬y=x+1=4£¬¼´C£¨3£¬4£©£¬µ±x=0ʱ£¬y=x+1=1£¬¼´B£¨0£¬1£©£®
½«Cµã£¨3£¬4£©´úÈëË«ÇúÏߣ¬µÃ
4=$\frac{k}{3}$£¬½âµÃk=12£¬
Ë«ÇúÏߵĽâÎöʽΪy=$\frac{12}{x}$£¬
µ±y=3ʱ£¬3=$\frac{12}{x}$£¬½âµÃx=4£¬¼´D£¨4£¬3£©£¬
½«B¡¢Dµã×ø±ê´úÈëÅ×ÎïÏߣ¬µÃ
$\left\{\begin{array}{l}{\frac{1}{2}¡Á{4}^{2}+4b+c=3}\\{c=1}\end{array}\right.$£¬
½âµÃ$\left\{\begin{array}{l}{b=-\frac{3}{2}}\\{c=1}\end{array}\right.$£®
Å×ÎïÏߵĽâÎöʽΪy=$\frac{1}{2}$x2-$\frac{3}{2}$x+1£»
£¨2£©µ±y=2ʱ£¬$\frac{1}{2}$x2-$\frac{3}{2}$x+1=2£¬½âµÃx1=$\frac{3+\sqrt{17}}{2}$£¬x2=$\frac{3-\sqrt{17}}{2}$£¬
¼´F1£¨$\frac{3+\sqrt{17}}{2}$£¬2£©£¬F2£¨$\frac{3-\sqrt{17}}{2}$£¬2£©£»
µ±y=2ʱ£¬2=$\frac{12}{x}$£¬½âµÃx=6£¬¼´E£¨6£¬0£©£¬
EF1=6-$\frac{3+\sqrt{17}}{2}$=$\frac{9-\sqrt{17}}{2}$£¬
EF2=6-$\frac{3-\sqrt{17}}{2}$=$\frac{9+\sqrt{17}}{2}$£»
£¨3£©µ±-1¡Üm¡Ü0ʱ£¬d=$\frac{1}{2}$m2-$\frac{3}{2}$m+1-£¨m+1£©=$\frac{1}{2}$m2-$\frac{5}{2}$m=$\frac{1}{2}$£¨m-$\frac{5}{2}$£©2-$\frac{25}{8}$
µ±0£¼m¡Ü3ʱ£¬d=m+1-£¨$\frac{1}{2}$m2-$\frac{3}{2}$m+1£©=-$\frac{1}{2}$m2+$\frac{5}{2}$m=-$\frac{1}{2}$£¨m-$\frac{5}{2}$£©2+$\frac{25}{8}$£¬µ±m=$\frac{5}{2}$ʱ£¬d×î´ó=$\frac{25}{8}$£»
µ±3£¼m¡Ü4ʱ£¬d=$\frac{12}{m}$-£¨$\frac{1}{2}$m2-$\frac{3}{2}$m+1£©£¬
dËæmµÄÔö´ó¶ø¼õСʱmµÄȡֵ·¶Î§ÊÇ-1¡Üm¡Ü0£¬$\frac{5}{2}$¡Üm¡Ü4£®

µãÆÀ ±¾Ì⿼²éÁ˶þ´Îº¯ÊýµÄ×ÛºÏÌ⣬ÀûÓÃÁË´ý¶¨ÏµÊý·¨Çóº¯Êý½âÎöʽ£¬º¯ÊýÖµÏàµÈµÄÁ½µã¼äµÄ¾àÀëÊǽϴóµÄºá×ø½ÏСµÄ¾ø¶ÔÖµ£¬×Ô±äÁ¿ÏàµÈµÄÁ½µã¼äµÄ¾àÀëÊǽϴóµÄ×Ý×ø±ê¼õ½ÏСµÄ×Ý×ø±ê£¬ÓÖÀûÓÃÁ˶þ´Îº¯ÊýµÄÐÔÖÊ£ºa£¾0ʱ£¬¶Ô³ÆÖáµÄ×ó²à£¬yËæxµÄÔö´ó¶ø¼õС£¬a£¼0ʱ£¬¶Ô³ÆÖáµÄÓҲ࣬yËæxµÄÔö´ó¶ø¼õС£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÔÚ10¡Á10µÄÍø¸ñÖ½ÉϽ¨Á¢Æ½ÃæÖ±½Ç×ø±êϵÈçͼËùʾ£¬ÔÚÖ±½ÇÈý½ÇÐÎABOÖУ¬¡ÏOAB=90¡ã£¬ÇÒµãBµÄ×ø±êΪ£¨3£¬4£©£®
£¨1£©»­³öÈý½ÇÐÎABOÏò×óÆ½ÒÆ3¸öµ¥Î»ºóµÄÈý½ÇÐÎA1B1O1£¬²¢Ð´³öµãBµÄ¶ÔÓ¦µãB1µÄ×ø±ê£»
£¨2£©Çó³öÈý½ÇÐÎA1B1O1µÄÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÒÑÖª¶þ´Îº¯Êýy=$\frac{1}{2}$x2+2x-$\frac{5}{2}$£®
£¨1£©Çó³öÅ×ÎïÏߵĶ¥µã×ø±ê¡¢¶Ô³ÆÖá¡¢×îÖµ£»
£¨2£©Çó³öÅ×ÎïÏßÓëxÖá¡¢yÖá½»µã×ø±ê£»
£¨3£©Ð´³öµ±y£¼0ʱ£¬xµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®Èçͼ£®AC£¬BD½»ÓÚµãO£®Í¼Öй²ÓÐ8ÌõÏ߶Σ¬ËüÃÇ·Ö±ðÊÇCD£¬OC£¬OA£¬OD£¬OB£¬BD£¬AC£¬AB£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®Óüò±ã·½·¨¼ÆË㣺
£¨1£©213¡Á255-213¡Á55£»
£¨2£©$\frac{6}{7}$¡Á15-$\frac{1}{7}$¡Á15-$\frac{12}{7}$¡Á15£»
£¨3£©2014+20142-20152£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®Ö±½Ç×ø±êϵÖÐÓеãA£¨m£¬3£©£¬µãB£¨2£¬n£©Á½µã£¬ÈôÖ±ÏßAB¡ÎyÖᣬÇÒAB=4£¬Çóm£¬nµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®ÏÂÁиù¾ÝµÈʽµÄÐÔÖʱäÐÎÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®ÓÉ4x=2x-1£¬µÃ4x-2x=1B£®ÓÉ-2x=4£¬µÃx=2
C£®ÓÉ5x-3=4£¬µÃ5x=4-3D£®ÓÉ-3x-2=2x+3£¬µÃ-3x-2x=3+2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®Èçͼ£¬PÊǵȱߡ÷ABCµÄAB±ßÉÏÒ»µã£¬¹ýP×÷PE¡ÍACÓÚE£¬ÔÚBCµÄÑÓ³¤ÏßÉϽØÈ¡CQ=AP£¬Á¬½ÓPQ½»ACÓÚµãD£®
£¨1£©Èô¡ÏQ=28¡ã£¬Çó¡ÏEPDµÄ¶ÈÊý£»
£¨2£©ÇóÖ¤£ºPD=QD£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®¼ÆË㣺
£¨1£©|-2|-£¨-2.5£©-|1-4|
£¨2£©£¨-12£©¡Â4¡Á£¨-6£©¡Â2
£¨3£©£¨-$\frac{1}{2}$+$\frac{1}{6}$-$\frac{3}{8}$+$\frac{5}{12}$£©¡Á24           
£¨4£©£¨-3$\frac{1}{5}$£©¡Á$\frac{5}{8}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸