【题目】如图,在△ABC中,∠ACB=90°,AC=BC,延长AB至点D,使DB=AB,连接CD,以CD为边作△CDE,其中CD=CE,∠DCE=90°,连接BE.
(1)求证:△ACD≌△BCE.
(2)若AB=6cm,则BE=______cm.
(3)BE与AD有何位置关系?请说明理由.
【答案】(1)证明见解析;(2)12;(3)垂直平分.
【解析】
(1)根据等腰直角三角形的性质得到CD=CE,CA=CB,然后利用“SAS”可判断△ACD≌△BCE即可;
(2)根据全等三角形的性质得到AD=BE即可;
(3)由全等三角形的性质得出∠EBC=∠A,由△ABC是等腰直角三角形,则∠A=∠ABC=∠EBC=45°,则BE⊥AD,即可得到答案.
解:(1)证明:∵△CDE是等腰直角三角形,∠DCE=90°,
∴CD=CE,
∵∠ACB=90°,
∴∠ACB=∠DCE,
∴∠ACB+∠BCD=∠DCE+∠BCD,
∴∠ACD=∠BCE,
在△ACD和△BCE中,,
∴△ACD≌△BCE(SAS);
(2)解:∵DB=AB,
∴AD=2AB=12cm,
由(1)得:△ACD≌△BCE,
∴BE=AD=12cm;
故答案为:12;
(3)由△ACD≌△BCE,
∴∠EBC=∠A,
∵△ABC是等腰直角三角形,
∴∠A=∠ABC=∠EBC=45°,
∴∠ABE=90°,
即BE⊥AD.
科目:初中数学 来源: 题型:
【题目】阅读题:甲同学解方程,如下:
甲:第一步
第二步
第三步
第四步
第五步
(1)他的解法第______步开始出现错误
(2)请把正确的解题过程写在右侧横线上,并在括号内填上对应步骤的理论依据.
正确解法:
去分母:__________________(___________________)
去括号:___________________
移项:__________________________
合并同类项:_______________________________
系数化1:_________________________________
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列说法正确的是( )
A. 一组数据2,2,3,4,这组数据的中位数是2
B. 了解一批灯泡的使用寿命的情况,适合抽样调查
C. 小明的三次数学成绩是126分,130分,136分,则小明这三次成绩的平均数是131分
D. 某日最高气温是,最低气温是,则该日气温的极差是
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列命题:①因为,所以是;②平行于同一条直线的两条直线平行;③相等的角是对顶角;④三角形三条中线的交点是三角形的重心;⑤同位角相等.其中真命题的个数是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2019年4月4日,中国国际女足锦标赛半决赛在武汉进行,这场由中国队迎战俄罗斯队的比赛牵动着众多足球爱好者的心.在未开始检票入场前,已有1200名足球爱好者排队等待入场.假设检票开始后,每分钟赶来的足球爱好者人数是固定的,1个检票口每分钟可以进入40人.如果4个检票口同时检票,15分钟后排队现象消失;如果7个检票口同时检票,_____分钟后排队现象消失.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知正方形ABCD的对角线交于O点,点E,F分别是AO,CO的中点,连接BE,BF,DE,DF,则下列结论中一定成立的是________.(把所有正确结论的序号都填在横线上)
①BF=DE;②∠ABO=2∠ABE;③S△AED=S△ACD;④四边形BFDE是菱形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,AB边的垂直平分线l1交BC于D,AC边的垂直平分线l2交BC于E,l1与l2相交于点O.△ADE的周长为6cm.
(1)求BC的长;
(2)分别连结OA、OB、OC,若△OBC的周长为16cm,求OA的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com