【题目】如图,中,,且,则________.
【答案】
【解析】
由DE∥FG∥BC,平行于三角形的一边的直线与其他两边相交,所构成的三角形与原三角形相似,即可判定△ADE∽△AFG∽△ABC,根据相似三角形的面积比等于相似比的平方,即可求得,,设S△ADE=4x,即可求得S梯形DFGE与S梯形FBCG的值,继而求得S△ADE:S梯形DFGE:S梯形FBCG的值.
∵△ABC中,DE∥FG∥BC,
∴△ADE∽△AFG∽△ABC,
∴ ,
∵AD:DF:FB=2:3:4,
∴,,
∴,,
设S△ADE=4x,则S△AFG=25x,S△ABC=81x,
∴S梯形DFGE=25x-4x=21x,S梯形FBCG=81x-25x=56x,
∴S△ADE:S梯形DFGE:S梯形FBCG=4:21:56.
故答案为:4:21:56.
科目:初中数学 来源: 题型:
【题目】八年级(1)班从学校出发去某景点旅游,全班分成甲、乙两组,甲组乘坐大型客车,乙组乘坐小型客车.已知甲组比乙组先出发,汽车行驶的路程(单位:)和行驶时间(单位:)之间的函数关系如图所示.
根据图象信息,回答下列问题:
(1)学校到景点的路程为_ ,甲组比乙组先出发 , 组先到达旅游景点;
(2)求乙组乘坐的小型客车的平均速度;
(3)从图象中你还能获得哪些信息? (请写出一条)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,BC为⊙O的切线,D为⊙O上的一点,CD=CB,延长CD交BA的延长线于点E.
(1)求证:CD为⊙O的切线;
(2)若BD的弦心距OF=1,∠ABD=30°,求图中阴影部分的面积.(结果保留π)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列说法正确的是( )
A. 各有一个角是的两个等腰三角形相似 B. 各有一个角是的两个等腰三角形相似
C. 有两边对应成比例的两个等腰三角形相似 D. 两腰对应成比例的两个等腰三角形相似
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下面材料:小腾遇到这样一个问题:如图1,在△ABC中,点D在线段BC上,∠BAD=75°,∠CAD=30°,AD=2,BD=2DC,求AC的长.
小腾发现,过点C作CE∥AB,交AD的延长线于点E,通过构造△ACE,经过推理和计算能够使问题得到解决(如图 2).
请回答:∠ACE的度数为 ,AC的长为 .
参考小腾思考问题的方法,解决问题:
如图 3,在四边形 ABCD中,∠BAC=90°,∠CAD=30°,∠ADC=75°,AC与BD交于点E,AE=2,BE=2ED,求BC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在边长为1的小正方形网格中,△AOB的顶点均在格点上.
(1)B点关于y轴的对称点坐标为 ;
(2)将△AOB向左平移3个单位长度得到△A1O1B1,请画出△A1O1B1;
(3)在(2)的条件下,A1的坐标为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,∠A=30°,以AB为直径的⊙O交BC于点D,交AC于点E,连结DE,过点B作BP平行于DE,交⊙O于点P,连结EP、CP、OP.
(1)BD=DC吗?说明理由;
(2)求∠BOP的度数;
(3)求证:CP是⊙O的切线.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,AB=AC,在△ABC的外部作等边三角形△ACD,E为AC的中点,连接DE并延长交BC于点F,连接BD.
(1)如图1,若∠BAC=100°,则∠ABD的度数为_____,∠BDF的度数为______;
(2)如图2,∠ACB的平分线交AB于点M,交EF于点N,连接BN,若BN=DN,∠ACB=.
(I)用表示∠BAD;
(II)①求证:∠ABN=30°;
②直接写出的度数以及△BMN的形状.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com