精英家教网 > 初中数学 > 题目详情

【题目】在等边中,点分别在边上.

1)如图,若,以为边作等边于点,连接

求证:①

平分

2)如图,若,作的延长线于点,求证:

【答案】1)①见解析;②见解析;(2)见解析

【解析】

1)①利用SAS即可证出△ABF≌△CAE,再根据全等三角形的性质即可证出结论;

②过点DDMAFM,作DNECEC延长线于N,利用AAS证出△ADM≌△CDN,即可得出DM=DN,然后根据角平分线的判定定理即可证出结论;

2)在CB上截取一点G,使CF=FG,连接AG,利用SAS证出△EAC≌△GCA,可得CE=AG,∠AEC=CGA,然后利用ASA证出△AGF≌△PCF,可得AG=CP,从而证出结论.

解:(1)①△ABC为等边三角形

AB=CA,∠B=CAE=BAC=60°

在△ABF和△CAE

∴△ABF≌△CAE

②过点DDMAFM,作DNECEC延长线于N

∵△ABF≌△CAE

∴∠BAF=ACE

∴∠AOC=180°-∠ACE-∠OAC=180°-∠BAF-∠OAC=180°-∠BAC=120°

∴∠MDN=360°-∠AOC-∠DMO-∠DNO=60°

∵△ACD为等边三角形

DA=DC,∠ADC=60°

∴∠ADC=MDN

∴∠ADC-∠MDC=MDN-∠MDC

∴∠ADM=CDN

在△ADM和△CDN

∴△ADM≌△CDN

DM=DN

平分

2)在CB上截取一点G,使CF=FG,连接AG

AE=2CFCG=CFFG=2CF

AE=CG

∵△ABC为等边三角形

∴∠EAC=GCA=60°

在△EAC和△GCA

∴△EAC≌△GCA

CE=AG,∠AEC=CGA

∵∠AEC=BCP

∴∠CGA=BCP,即∠AGF=PCF

在△AGF和△PCF

∴△AGF≌△PCF

AG=CP

CE=CP

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC的顶点A、B在x轴上,点C在y轴上正半轴上,且

A(-1,0),B(4,0),∠ACB=90°.

(1)求过A、B、C三点的抛物线解析式;

(2)设抛物线的对称轴l与BC边交于点D,若P是对称轴l上的点,且满足以P、C、D为顶点的三角形与△AOC相似,求P点的坐标;

(3)在对称轴l和抛物线上是否分别存在点M、N,使得以A、O、M、N为顶点的四边形是平行四边形,若存在请直接写出点M、点N的坐标;若不存在,请说明理由.

图1 备用图

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边ABCD中,AD=2ABFAD的中点,作CE⊥AB,垂足E在线段AB上,连接EFCF,则下列结论中一定成立的是 (把所有正确结论的序号都填在横线上)

1∠DCF=∠BCD,(2EF=CF;(3SΔBEC=2SΔCEF;(4∠DFE=3∠AEF

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】列方程解应用题:第19届亚洲运动会将于2022910日至25日在杭州举行,杭州奥体博览城将成为杭州2022年亚运会的主场馆,某工厂承包了主场馆建设中某一零件的生产任务,需要在规定时间内生产24000个零件,若每天比原计划多生产30个零件,则在规定时间内可以多生产300个零件.

1)求原计划每天生产的零件个数和规定的天数.

2)为了提前完成生产任务,工厂在安排原有工人按原计划正常生产的同时,引进5组机器人生产流水线共同参与零件生产,已知每组机器人生产流水线每天生产零件的个数比20个工人原计划每天生产的零件总数还多,按此测算,恰好提前两天完成24000个零件的生产任务,求原计划安排的工人人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,BC=2,E、F分别为射线BC,CD上两个动点,且满足BE=CF,设AE,BF交于点G,连接DG,则DG的最小值为_______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB两点在正方形网格的格点上,每个方格都是边长为1的正方形.点C也在格点上,且△ABC为等腰三角形,则符合条件的点C有( )个.

A.3B.5C.8D.10

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图正方形ABCD,AD=4,E是对角线AC上一点连接DE,过点EEFED,AB于点F,连接DF,AC于点G,EFG沿EF翻折得到EFM,连接DM,EF于点N,若点FAB的中点EMN的周长是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】美丽的甬江宛如一条玉带穿城而过,数学课外实践活动中,小林在甬江岸边的A, B两点处,利用测角仪分别对西岸的一观景亭D进行测量.如图,测得∠DAC=45°,DBC=65°,若AB=114米,求观景亭D到甬江岸边AC的距离约为多少米?

(参考数据:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,中,,且,则________

查看答案和解析>>

同步练习册答案