精英家教网 > 初中数学 > 题目详情

【题目】甲、乙两同学玩托球赛跑游戏,商定:用球拍托着乒乓球从起跑线l起跑,绕过点P跑回到起跑线l(如图所示),途中乒乓球掉下时须捡起并回到掉球处继续赛跑,用时少者胜.结果:甲同学由于心急,掉了球,浪费了6秒钟,乙同学则顺利跑完.事后,乙同学说:我俩所用的全部时间的和为50秒,捡球过程不算在内时,甲的速度是我的1.2倍.根据图文信息,请问哪位同学获胜?

【答案】乙同学获胜.

【解析】

应算出甲乙两人所用时间.等量关系为:(甲同学跑所用时间+6)+乙同学所用时间=50.

设乙同学的速度为x/秒,则甲同学的速度为1.2x/秒,

根据题意,得=50,解得x=2.5,

经检验,x=2.5是原方程的解,且符合题意

所以甲同学所用的时间为+6=26(),

乙同学所用的时间为=24(),

因为26>24,

所以乙同学获胜.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,山顶建有一座铁塔,塔高米,测量人员在一个小山坡的P处测得塔的底部B点的仰角为,塔顶C点的仰角为已测得小山坡的坡角为,坡长求山的高度精确到1参考数据:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的一元二次方程x2+5x﹣2m=0有两个不相等的实数根.

(1)求m的取值范围;

(2)若两个实数根分别为x1x2,且x12+x22=23,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】节能灯在城市已经基本普及,某商场计划购进甲、乙两种型号的节能灯共1200只,这两种节能灯的进价、售价如下表:

(1)如何进货,进货款恰好为46000.

(2)如何进货,商场销售完节能灯后获利恰好是进货价的30%,此时利润为多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若干名工人某天生产同一种玩具,生产的玩具数整理成条形图(如图所示).则他们生产的玩具数的平均数、中位数、众数分别为( )

A.5,5,4 B.5,5,5

C.5,4,5 D.5,4,4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,用正方形是墩垒石梯,下图分别表示垒到一、二阶梯时的情况,那么照这样垒下去

一级 二级

①填出下表中未填的两空,观察规律。

阶梯级数

一级

二级

三级

四级

石墩块数

3

9

②到第n级阶梯时,共用正方体石墩_______________块(用n的代数式表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)阅读下面材料:

点A,B在数轴上分别表示实数a,b,A,B两点之间的距离表示为|AB|.

当A,B两点中有一点在原点时,不妨设点A在原点,如图(1),|AB|=|OB|=|b|=|a﹣b|;当A,B两点都不在原点时,

①如图(2),点A,B都在原点的右边,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|;

②如图(3),点A,B都在原点的左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a﹣b|;

③如图(4),点A,B在原点的两边,|AB|=|OA|+|OB|=|a|+|b|=a+(﹣b)=|a﹣b|;

综上,数轴上A,B两点之间的距离|AB|=|a﹣b|.

(2)回答下列问题:

①数轴上表示2和5的两点之间的距离是  ,数轴上表示﹣2和﹣5的两点之间的距离是  ,数轴上表示1和﹣3的两点之间的距离是  

②数轴上表示x和﹣1的两点A和B之间的距离是  ,如果|AB|=2,那么x为  

③当代数式|x+1|+|x﹣2|取最小值时,相应的x的取值范围是  

④解方程|x+1|+|x﹣2|=5.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】东东在研究数学问题时遇到一个定义:将三个已经排好顺序数:x1x2x3,称为数列x1x2x3.计算|x1|,将这三个数的最小值称为数列x1x2x3的最佳值.例如,对于数列2-13,因为|2|=2==,所以数列2-13的最佳值为

东东进一步发现:当改变这三个数的顺序时,所得到的数列都可以按照上述方法计算其相应的最佳值.如数列-123的最佳值为;数列3-12的最佳值为1.经过研究,东东发现,对于“2-13”这三个数,按照不同的排列顺序得到的不同数列中,最佳值的最小值为.根据以上材料,回答下列问题:

1)数列-4-31的最佳值为

2)将“-4-32”这三个数按照不同的顺序排列,可得到若干个数列,这些数列的最佳值的最小值为 ,取得最佳值最小值的数列为 (写出一个即可);

3)将2-9aa1)这三个数按照不同的顺序排列,可得到若干个数列.若这些数列的最佳值为1,求a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校为奖励学习之星,准备在某商店购买AB两种文具作为奖品,已知一件A种文具的价格比一件B种文具的价格便宜5元,且用600元买A种文具的件数是用400元买B种文具的件数的2倍.

1)求一件A种文具的价格;

2)根据需要,该校准备在该商店购买AB两种文具共150件.

①求购买AB两种文具所需经费W与购买A种文具的件数a之间的函数关系式;

②若购买A种文具的件数不多于B种文具件数的2倍,且计划经费不超过2750元,求有几种购买方案,并找出经费最少的方案,及最少需要多少元?

查看答案和解析>>

同步练习册答案