【题目】如图,以AD为直径的半圆O经过Rt△ABC斜边AB的两个端点,交直角边AC于点E,B、E是半圆弧的三等分点,弧BE的长为π,则图中阴影部分的面积为( )
A.B.C.D.
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx+5经过坐标轴上A、B和C三点,连接AC,tanC=,5OA=3OB.
(1)求抛物线的解析式;
(2)点Q在第四象限的抛物线上且横坐标为t,连接BQ交y轴于点E,连接CQ、CB,△BCQ的面积为S,求S与t的函数解析式;
(3)已知点D是抛物线的顶点,连接CQ,DH所在直线是抛物线的对称轴,连接QH,若∠BQC=45°,HR∥x轴交抛物线于点R,HQ=HR,求点R的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线过点且与轴交于点.把点向左平移2个单位,再向上平移4个单位,得到点.过点的直线交轴于点.
(1)求直线的解析式.
(2)直线与交于点,在直线和直线上是否存在点,使,若存在,求出点的坐标;若不存在,说明理由.
(3)若有过点的直线与线段有公共点且满足随的增大而减小,设直线与轴交点横坐标为,直接写出的取值范围________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象交于两点,与轴交于点,过点作轴于点,点是线段的中点,,,点的坐标为.
(1)求该反比例函数和一次函数的解析式;
(2)求的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=40°,连接BD、CE.将△ADE绕点A旋转,BD、CE也随之运动.
(1)求证:BD=CE;
(2)在△ADE绕点A旋转过程中,当AE∥BC时,求∠DAC的度数;
(3)如图②,当点D恰好是△ABC的外心时,连接DC,判断四边形ADCE的形状,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知四边形ABDE是平行四边形,C为边B D延长线上一点,连结AC、CE,使AB=AC.
(1)求证:△BAD≌△AEC;
(2)若∠B=30°,∠ADC=45°,BD=10,求平行四边形ABDE的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙O的直径AB=10,弦AC=6,∠ACB的平分线交⊙O于D,过点D作DE∥AB交CA的延长线于点E,连接AD,BD.
(1)由AB,BD,围成的曲边三角形的面积是 ;
(2)求证:DE是⊙O的切线;
(3)求线段DE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某地区一种商品的需求量y1(单位:万件)、供应量y2(单位;万件)与价格x(单位:元/件)分别近似满足下列函数关系式:y1=-x+60,y2=2x-36.需求量为0时,即停止供应.当y1=y2时,该商品的价格称为稳定价格,需求量称为稳定需求量.
(1)求该商品的稳定价格与稳定需求量;
(2)价格在什么范围时,该商品的需求量低于供应量;
(3)当需求量高于供应量时,政府常通过对供应方提供价格补贴来提高供货价格,以提高供应量.现若要使稳定需求量增加4万件,政府应对每件商品提供多少元补贴才能使供应量等于需求量?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系,点 O 是原点,直线 y x 6分别交 x 轴,y 轴于点 B,A,经过点 A 的直线 y x b 交 x 轴于点 C.
(1)求 b 的值 ;
(2)点 D 是线段 AB 上的一个动点,连接 OD,过点 O 作 OE⊥OD 交 AC 于点 E,连接DE,将△ODE 沿 DE 折叠得到△FDE,连接 AF.设点 D 的横坐标为 t,AF 的长为 d,当t> 3 时,求 d 与 t 之间的函数关系式(不要求写出自变量 t 的取值范围);
(3)在(2)的条件下,DE 交 OA 于点 G,且 tan∠AGD=3.点 H 在 x 轴上(点 H 在点O 的右侧),连接 DH,EH,FH,当∠DHF=∠EHF 时,请直接写出点 H 的坐标,不需要写出解题过程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com