精英家教网 > 初中数学 > 题目详情
如图,将一块直角三角形纸板的直角顶点放在C(1,)处,两直角边分别与x,y轴平行,纸板的另两个顶点A,B恰好是直线y=kx+与双曲线y=(m>0)的交点.

(1)求m和k的值;
(2)设双曲线y=(m>0)在A,B之间的部分为L,让一把三角尺的直角顶点P在L上滑动,两直角边始终与坐标轴平行,且与线段AB交于M,N两点,请探究是否存在点P使得MN=AB,写出你的探究过程和结论.
(1)k=﹣且m=4 (2)不存在,理由见解析

试题分析:(1)由题意易知点A横坐标为1,代入Y=,可用含m的代数式表示它的纵坐标;同理可表示点B坐标,再代入方程组即可求m和k的值;
(2)用反证法证明.假设存在,运用一元二次方程判别式即可解出.
解:(1)∵A,B在双曲线y=(m>0)上,AC∥y轴,BC∥x轴,
∴A,B的坐标分别(1,m),(2m,).(1分)
又点A,B在直线y=kx+上,
(2分)
解得(4分)
当k=﹣4且m=时,点A,B的坐标都是(1,,不合题意,应舍去;
当k=﹣且m=4时,点A,B的坐标分别为(1,4),(8,,符合题意.
∴k=﹣
且m=4.(5分)
(2)假设存在点P使得MN=AB.
∵AC∥y轴,MP∥y轴,
∴AC∥MP,
∴∠PMN=∠CAB,
∴Rt△ACB∽Rt△MPN,
,(7分)
设点P坐标为P(x,)(1<x<8),
∴M点坐标为M(x,﹣x+),
∴MP=﹣
又∵AC=4﹣
,即2x2﹣11x+16=0(※)(9分)
∵△=(﹣11)2﹣4×2×16=﹣7<0.
∴方程(※)无实数根.
∴不存在点P使得MN=AB.(10分)
点评:此题难度中等,考查反比例函数的性质及坐标意义.解答此题时同学们要注意运用数形结合的思想.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

下列问题中,两个变量成反比例的是(  )
A.长方形的周长确定,它的长与宽
B.长方形的长确定,它的周长与宽
C.长方形的面积确定,它的长与宽
D.长方形的长确定,它的面积与宽

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知变量y与2x成反比例,且当x=2时,y=6,
(1)求y与x之间的函数关系.
(2)请判断点B(3,4)是否在这个反比例函数的图象上,并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

若双曲线在每个象限中都随着增大而减小,则的值可以是  。(仅写一个)

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

一次函数y=﹣x+1与反比例函数y=﹣,x与y的对应值如下表:
﹣3 ﹣2 ﹣1 1   2   3
y=ax+b  4   3   2   0  ﹣1 ﹣2
y=﹣     1   2  ﹣2 ﹣1 ﹣
方程﹣x+1=﹣的解为  ;不等式﹣x+1>﹣的解集为  

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在Rt△ABC中,∠C=90°,∠A=30°,BC=2.若将此直角三角形的一条直角边BC或AC与x轴重合,使点A或点B刚好在反比例函数 (x>0)的图象上时,设△ABC在第一象限部分的面积分别记做S1、S2(如图1、图2所示)D是斜边与y轴的交点,通过计算比较S1、S2的大小.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,已知动点A在函数的图象上,AB⊥x轴于点B,AC⊥y轴于点C,延长CA至点D,使AD=AB,延长BA至点E,使AE=AC.直线DE分别交x轴于点P,Q.当QE:DP=4:9时,图中阴影部分的面积等于  

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,两个反比例函数的图象分别是l1和l2.设点P在l1上,PC⊥x轴,垂足为C,交l2于点A,PD⊥y轴,垂足为D,交l2于点B,则三角形PAB的面积为(  )
A.3B.4C.D.5

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,点A在双曲线y=上,点B在双曲线y=(k≠0)上,AB∥x轴,分别过点A、B向x轴作垂线,垂足分别为D、C,若矩形ABCD的面积是8,则k的值为(  )

A.12   B.10   C.8   D.6

查看答案和解析>>

同步练习册答案