精英家教网 > 初中数学 > 题目详情
20.下列各数中最小的数是(  )
A.-6B.-3C.0D.1

分析 依据正数都大于0,负数都小于0,正数大于一切负数,两个负数,绝对值大的其值反而小进行比较即可.

解答 解:∵6>3,
∴-6<-3.
∵正数都大于0,负数都小于0,正数大于一切负数,
∴-6<-3<0<1.
故最小的是-6.
故选:A.

点评 本题主要考查的是比较有理数的大小,熟练掌握比较有理数大小的法则是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

10.函数y=$\frac{k}{x}$与y=-kx2+k(k≠0)在同一直角坐标系中的图象可能是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.满足下列条件的△ABC中,不是直角三角形的是(  )
A.b2=c2-a2B.a:b:c=3:4:5C.∠C=∠A-∠BD.∠A:∠B:∠C=3:4:5

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.对于函数y=xn+xm,我们定义y'=nxn-1+mxm-1(m、n为常数).
例如y=x4+x2,则y'=4x3+2x.
已知:y=$\frac{1}{3}$x3+(m-1)x2+m2x.
(1)若方程y′=0有两个相等实数根,则m的值为$\frac{1}{2}$;
(2)若方程y′=m-$\frac{1}{4}$有两个正数根,则m的取值范围为$m≤\frac{3}{4}$且$m≠\frac{1}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.邻边不相等的平行四边形纸片,剪去一个菱形,余下的一个四边形,称为第一次操作;在余下的四边形纸片中再剪去一个菱形,又余下一个四边形,称为第二次操作;…依此类推,若第n次操作余下的四边形是菱形,则称原平行四边形为n阶准菱形,如图1,?ABCD中,若AB=1,BC=2,则?ABCD为1阶准菱形.
(1)猜想与计算:
邻边长分别为3和5的平行四边形是3阶准菱形;已知?ABCD的邻边长分别为a,b(a>b),满足a=8b+r,b=5r,请写出?ABCD是12阶准菱形.
(2)操作与推理:
小明为了剪去一个菱形,进行了如下操作:如图2,把?ABCD沿BE折叠(点E在AD上),使点A落在BC边上的点F处,得到四边形ABFE.请证明四边形ABFE是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.如图,在等边三角形△ABC中,AB=6,BD是AC边上的高,以点B为圆心,线段BD的长度为半径画弧,交AB于点E,交BC于点F,则图中阴影部分的面积是(  )
A.8$\sqrt{3}$-$\frac{9}{2}$πB.9$\sqrt{3}$-$\frac{9}{2}$πC.9$\sqrt{3}$-4πD.8$\sqrt{3}$-4π

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.计算:
(1)(a+1)2-a(2-a)    
 (2)(x-1+$\frac{2x+1}{x+1}$)÷$\frac{x+2}{2x+2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.计算
(1)$\frac{3}{\sqrt{3}}$-($π+\sqrt{3}$)0+$\sqrt{3}$-|$\sqrt{3}$-2|
(2)(1-$\sqrt{5}$)($\sqrt{5}$+1)+($\sqrt{5}$-1)2
(3)$\sqrt{48}$-$\sqrt{54}$÷2+(3-$\sqrt{3}$)(1+$\frac{1}{\sqrt{3}}$)
(4)(3$\sqrt{12}$-2$\sqrt{\frac{1}{3}}$+$\sqrt{48}$)$÷2\sqrt{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.已知x2-3xy-3=0,则x4-3x3y-9xy=9.

查看答案和解析>>

同步练习册答案