精英家教网 > 初中数学 > 题目详情

【题目】如图所示,DAAB,EAAC,AB=AD,AC=AE,BECD相交于O,ABCD相交于P,则∠DOE的度数是____.

【答案】90°

【解析】

根据已知条件易证得△AEB≌△ACD,可得∠D=ABE,由DAAB可得∠D+APD=90°,而由图可知∠APD和∠BPO是对顶角相等,即可得∠DOE=DOB=90°.

解:∵DAABEAAC

∴∠DAB=CAE=90°,

∴∠DAB+BAC=CAE+BAC,即∠DAC=BAE

又∵AB=ADAC=AE

∴△AEB≌△ACDSAS),

∴∠D=ABE

DAAB

∴∠D+APD=90°,

∵∠APD=BPO(对顶角相等),已证得∠D=ABE

∴∠BPO+ABE=90°,

∴∠DOE=DOB=90°.

故答案为:90°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图所示,一张边长为的正方形硬纸板,把它的四个角都剪去一个边长为工(为正整数)的小正方形,然后把它折成一个无盖的长方体,设长方体的容积为,请回答下列问题:

1)用含有的代数式表示,则

2)完成下表:

1

2

3

4

5

6

7

3)观察上表,当取什么值时,容积的值最大?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,数轴上,O点与C点对应的数分别是0、60(单位:单位长度),将一根质地均匀的直尺AB放在数轴上(AB的左边),若将直尺在数轴上水平移动,当A点移动到B点的位置时,B点与C点重合,当B点移动到A点的位置时,A点与O点重合.

(1)直尺的长为多少个单位长度(直接写答案)

(2)如图2,直尺AB在数轴上移动,有BC=4OA,求此时A点对应的数;

(3)如图3,以OC为边搭一个横截面为长方形的不透明的篷子,将直尺放入篷内的数轴上的某处(看不到直尺的任何部分,AB的左边),将直尺AB沿数轴以5个单位/秒的速度分别向左、向右移动,直到完全看到直尺,所经历的时间为t1、t2t1﹣t2=2(秒),求直尺放入蓬内,A点对应的数为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,∠E∠F90°∠B∠CAEAF.有以下结论:①EMFN②CDDN③∠FAN∠EAM④△ACN≌△ABM.其中正确的有( ).

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在一张矩形纸片ABCD中,AB=4,BC=8,点E,F分别在AD,BC上,将纸片ABCD沿直线EF折叠,点C落在AD上的一点H处,点D落在点G处,有以下四个结论:
①四边形CFHE是菱形;
②EC平分∠DCH;
③线段BF的取值范围为3≤BF≤4;
④当点H与点A重合时,EF=2
以上结论中,你认为正确的有 . (填序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC,OAC边上的一点.过点O作直线MNBC,MN交∠BCA的平分线于点E,交∠BCA的外角平分线于F

1)求证:EO=FO;(2)若CE=4,CF=3,你还能得到那些结论?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】

(1)如图1,在正方形ABCD中,M是BC边(不含端点B、C)上任意一点,P是BC延长线上一点,N是DCP的平分线上一点.若AMN=90°,求证:AM=MN.

下面给出一种证明的思路,你可以按这一思路证明,也可以选择另外的方法证明.

证明:在边AB上截取AE=MC,连ME.正方形ABCD中,B=BCD=90°,AB=BC.

∴∠NMC=180°—∠AMN—∠AMB=180°—∠B—∠AMB=MAB=MAE.

(下面请你完成余下的证明过程)

(2)若将(1)中的正方形ABCD改为正三角形ABC(如图2),N是ACP的平分线上一点,则当AMN=60°时,结论AM=MN是否还成立?请说明理由.

(3)若将(1)中的正方形ABCD改为边形ABCD……X,请你作出猜想:当AMN= °时,结论AM=MN仍然成立.(直接写出答案,不需要证明)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某高校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.
(1)这次被调查的同学共有名;
(2)把条形统计图补充完整;
(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐.据此估算,该校18 000名学生一餐浪费的食物可供多少人食用一餐?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我县果菜大王王大炮收货番茄20吨,青椒12吨.现计划租用甲、乙两种货车共8辆将这批果菜全部运往外地销售,已知一辆甲种货车可装番茄4吨和青椒1吨,一辆乙种货车可装番茄和青椒各2吨.

1)王灿有几种方案安排甲、乙两种货车可一次性地将果菜运到销售地?

2)若甲种货车每辆要付运输费300元,乙种货车每辆要付运输费240元,则果农王大炮应选择哪种方案,使运输费最少?最少运费是多少?

查看答案和解析>>

同步练习册答案