【题目】如图,在△ABC中,AD⊥BC于点D,AE平分∠BAC,∠B=70°,∠C=30°.求:
(1)∠BAE的度数;
(2)∠DAE的度数.
【答案】(1) 40°;(2) 20°
【解析】
(1)由三角形内角和定理可求得∠BAC的度数,AE是角平分线,有∠BAE =∠EAC=∠BAC;
(2)在RT△ABD中,可求得∠BAD的度数,,故∠DAE =∠BAE-∠BAD.
解:(1)因为∠B+∠C+∠BAC=180°,
所以∠BAC=180°-∠B-∠C=180°-70°-30°=80°.
因为AE平分∠BAC,
所以∠BAE=∠BAC=40°.
(2)因为AD⊥BC,所以∠ADB=90°.
而∠ADB+∠B+∠BAD=180°,
所以∠BAD=180°-∠ADB-∠B=20°,
所以∠DAE=∠BAE-∠BAD=40°-20°=20°.
科目:初中数学 来源: 题型:
【题目】如图,∠3和∠9是直线________、_______被直线_______所截而成的______角;∠6和∠9是直线_____、______被直线________所截而成的_______角.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】列方程解应用题:
为宣传社会主义核心价值观,某社区居委会计划制作1200个大小相同的宣传栏.现有甲、乙两个广告公司都具备制作能力,居委会派出相关人员分别到这两个广告公司了解情况,获得如下信息:
信息一:甲公司单独制作完成这批宣传栏比乙公司单独制作完成这批宣传栏多用10天;
信息二:乙公司每天制作的数量是甲公司每天制作数量的1.2倍.
根据以上信息,求甲、乙两个广告公司每天分别能制作多少个宣传栏?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了提高服务质量,某宾馆决定对甲、乙两种套房进行星级提升,已知甲种套房提升费用比乙种套房提升费用少3万元,如果提升相同数量的套房,甲种套房费用为625万元,乙种套房费用为700万元.
(1)甲、乙两种套房每套提升费用各多少万元?
(2)如果需要甲、乙两种套房共80套,市政府筹资金不少于2090万元,但不超过2096万元,且所筹资金全部用于甲、乙种套房星级提升,市政府对两种套房的提升有几种方案?哪一种方案的提升费用最少?
(3)在(2)的条件下,根据市场调查,每套乙种套房的提升费用不会改变,每套甲种套房提升费用将会提高a万元(a>0),市政府如何确定方案才能使费用最少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)观察一列数2,4,8,16,32,…,发现从第二项开始,每一项与前一项之比是一个常数,这个常数是________;根据此规律,如果an(n为正整数)表示这个数列的第n项,那么a18=________,an=________.
(2)欲求1+3+32+33+…+320的值,可令
S=1+3+32+33+…+320,①
将①两边同乘3,得__________________,②
由②减去①,得S=____________.
(3)用由特殊到一般的方法知:若数列a1,a2,a3,…,an,从第二项开始每一项与前一项之比的常数为q,则an=________(用含a1,q,n的代数式表示).如果这个常数q≠1,求a1+a2+a3+…+an的值(用含a1,q,n的代数式表示).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,以等边三角形ABC的BC边为直径画半圆,分别交AB、AC于点E、D,DF是圆的切线,过点F作BC的垂线交BC于点G.若AF的长为2,则FG的长为( )
A.4
B.6
C.3
D.2
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com