【题目】如图,在矩形中,,,点为边上点,沿折叠,点在矩形内部的对应点为,若点到矩形两条较长边的距离之比为,则的长为____.
【答案】或或
【解析】
由点到矩形两条较长边的距离之比为分点E在矩形内部,EM:EN=1:4,或EM:EN=4:1,点E在矩形外部,EN:EM=1:4,三种情况讨论,根据折叠的性质和勾股定理可求AP的长度.
解:过点E作ME⊥AD,延长ME交BC与N,
∵四边形ABCD是矩形,
∴AD∥BC,且ME⊥DA,
∴EN⊥BC且∠A=90°=∠ABC=90°,
∴四边形ABNM是矩形,
∴MN=AB=5,AM=BN,
若ME:EN=1:4,如图1,
∵ME:EN=1:4,MN=5
∴ME=1,EN=4
∵BE=AB=5,AP=PE
若ME:EN=4:1,则EN=1,ME=4,如图2
在Rt△BEN中,BN=
∴
在Rt△PME中,
解得
若点E在矩形外,如图3
∵EN:EM=1:4
∴
在Rt△BEN中,
∴
在Rt△PME中,
解得:
故答案为:或或
科目:初中数学 来源: 题型:
【题目】如图,已知双曲线y=和直线y=-x+2,P是双曲线第一象限上一动点,过P作y轴的平行线,交直线y=-x+2于Q点,O为坐标原点.
(1)求直线y=-x+2与坐标轴围成三角形的周长;
(2)设△PQO的面积为S,求S的最小值.
(3)设定点R(2,2),以点P为圆心,PR为半径画⊙P,设⊙P与直线y=-x+2交于M、N两点.
①判断点Q与⊙P的位置关系,并说明理由;
②求S△MON=S△PMN时的P点坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】四张扑克牌的点数分别是2,5,6,8,除点数不同外,其余都相同,将它们洗匀后背面朝上放在桌上
(1)若从中随机抽取一张牌,则抽出的牌的点数是偶数的概率为 ;
(2)若随机抽取一张牌不放回,接着再抽取一张牌,请用列表法或画树状图法(只选其中一种)表示出所有可能出现的结果,并求所抽两张牌的点数都是偶数的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,点A的坐标为A(1,0),等腰直角三角形ABC的边AB在x轴的正半轴上,∠ABC=90°,点B在点A的右侧,点C在第一象限.将△ABC绕点A逆时针旋转75°,如果点C的对应点E恰好落在y轴的正半轴上,那么点C的坐标为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠BAC=90°,AB=AC.在平面内任取一点D,连结AD(AD<AB),将线段AD绕点A逆时针旋转90°,得到线段AE,连结DE,CE,BD.
(1)直线BD和CE的位置关系是 ;
(2)猜测BD和CE的数量关系并证明;
(3)设直线BD,CE交于点P,把△ADE绕点A旋转,当∠EAC=90°,AB=2,AD=1时,直接写出PB的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】问题发现:(1)如图1,在等腰直角三角形中,,点为的中点,点为上一点,将射线顺时针旋转交于点,则与的数量关系为____;
问题探究:(2)如图2,在等腰三角形中,,点为的中点,点为上一点,将射线顺时针旋转交于点,则与的数量关系是否改变,请说明理由;
问题解决:(3)如图3,点为正方形对角线的交点,点为的中点,点为直线上一点,将射线顺时针旋转交直线于点,若,当面积为时,直接写出线段的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:有一组邻边相等且对角互补的四边形叫做等补四边形.
(问题理解)
(1)如图1,点A、B、C在⊙O上,∠ABC的平分线交⊙O于点D,连接AD、CD.
求证:四边形ABCD是等补四边形;
(拓展探究)
(2)如图2,在等补四边形ABCD中,AB=AD,连接AC,AC是否平分∠BCD?请说明理由;
(升华运用)
(3)如图3,在等补四边形ABCD中,AB=AD,其外角∠EAD的平分线交CD的延长线于点F.若CD=6,DF=2,求AF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们知道求函数图象的交点坐标,可以联立两个函数解析式组成方程组,方程组的解就是交点的坐标.如:求直线y=2x+3与y=﹣x+6的交点坐标,我们可以联立两个解析式得到方程组,解得,所以直线y=2x+3与y=﹣x+6的交点坐标为(1,5).请利用上述知识解决下列问题:
(1)已知直线y=kx﹣2和抛物线y=x2﹣2x+3,
①当k=4时,求直线与抛物线的交点坐标;
②当k为何值时,直线与抛物线只有一个交点?
(2)已知点A(a,0)是x轴上的动点,B(0,4),以AB为边在AB右侧做正方形ABCD,当正方形ABCD的边与反比例函数y=的图象有4个交点时,试求a的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一艘轮船在处测得灯塔位于其北偏东方向上,轮船沿正东方向航行20海里到达处后,测得灯塔位于其北偏东方向上,轮船沿计划路线航行时与灯塔的距离最少是_______海里.(结果保留根号)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com