【题目】在平面直角坐标系中,已知直线l:y=﹣x+2交x轴于点A,交y轴于点B,直线l上的点P(m,n)在第一象限内,设△AOP的面积是S.
(1)写出S与m之间的函数表达式,并写出m的取值范围.
(2)当S=3时,求点P的坐标.
(3)若直线OP平分△AOB的面积,求点P的坐标.
【答案】(1)S=4﹣m,0<m<4;(2)(1,);(3)(2,1)
【解析】
(1)根据点A、P的坐标求得△AOP的底边与高线的长度;然后根据三角形的面积公式即可求得S与m的函数关系式;
(2)将S=3代入(1)中所求的式子,即可求出点P的坐标;
(3)由直线OP平分△AOB的面积,可知OP为△AOB的中线,点P为AB的中点,根据中点坐标公式即可求解.
解:∵直线l:y=﹣x+2交x轴于点A,交y轴于点B,
∴A(4,0),B(0,2),
∵P(m,n)
∴S=×4×(4﹣m)=4﹣m,即S=4﹣m.
∵点P(m,n)在第一象限内,∴m+2n=4,
∴,
解得0<m<4;
(2)当S=3时,4﹣m=3,
解得m=1,
此时y=(4﹣1)=,
故点P的坐标为(1,);
(3)若直线OP平分△AOB的面积,则点P为AB的中点.
∵A(4,0),B(0,2),
∴点P的坐标为(2,1).
科目:初中数学 来源: 题型:
【题目】如图,已知∠BAC=60° ,∠B=80° ,DE垂直平分AC交BC于点D,交AC于点E.
(1)求∠BAD的度数;
(2)若AB=10,BC=12,求△ABD的周长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】观察下列等式:
12×231=132×21,
13×341=143×31
23×352=253×32,
34×473=374×43,
62×286=682×26,
……
以上每个等式中两边数字是分别对称的,且每个等式中组成两位数与三位数的数字之间具有相同规律,我们称这类等式为“数字对称等式”
(1)根据上述各式反映的规律填空,使式子称为“数字对称等式”:
①52× = ×25
② ×396=693× ;
(2)设这类等式左边两位数的十位数字为a,个位数字为b,且2≤a+b≤9,写出表示“数字对称等式”一般规律的式子(含a,b),并证明;
(3)若(2)中a,b表示一个两位数,例如a=11,b=22,则1122×223311=113322×2211,请写出表示这类“数字对称等式”一般规律的式子(含a,b),并写出a+b的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,E、F分别是边AD、CD上的点,AE=ED,DF=DC,连接EF并延长交BC的延长线于点G.
(1)求证:△ABE∽△DEF;
(2)若正方形的边长为4,求BG的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线l1:y=﹣2x+2交x轴于点A,交y轴于点B,直线l2:y=x+1交x轴于点D,交y轴于点C,直线l1、l2交于点M.
(1)点M坐标为_____;
(2)若点E在y轴上,且△BME是以BM为一腰的等腰三角形,则E点坐标为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某单位准备组织员工到武夷山风景区旅游,旅行社给出了如下收费标准(如图所示):
设参加旅游的员工人数为x人.
(1)当25<x<40时,人均费用为 元,当x≥40时,人均费用为 元;
(2)该单位共支付给旅行社旅游费用27000元,请问这次参加旅游的员工人数共有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在如图所示的方格纸中.
(1)作出关于对称的图形.
(2)说明,可以由经过怎样的平移变换得到?
(3)以所在的直线为轴,的中点为坐标原点,建立直角坐标系,试在轴上找一点,使得最小(保留找点的作图痕迹,描出点的位置,并写出点的坐标).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,两个村庄A、B在河CD的同侧,A、B两村到河的距离分别为AC=1千米,BD=3千米,CD=3千米.现要在河边CD上建造一水厂,向A、B两村送自来水.铺设水管的工程费用为每千米20000元,请你在CD上选择水厂位置O,使铺设水管的费用最省,并求出铺设水管的总费用W.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,点C是⊙O上一点,AD与过点C的切线垂直,垂足为点D,直线DC与AB的延长线相交于点P,弦CE平分∠ACB,交AB于点F,连接BE.
(1)求证:AC平分∠DAB;
(2)求证:△PCF是等腰三角形;
(3)若∠BEC=30°,求证:以BC,BE,AC边的三角形为直角三角形.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com