【题目】自定义:在一个图形上画一条直线,若这条直线既平分该图形的面积,又平分该图形的周长,我们称这条直线为这个图形的“等分积周线”.
(1)如图1,已知△ABC,AC≠BC,过点C能否画出△ABC的一条“等分积周线”?若能,说出确定的方法,若不能,请说明理由.
(2)如图2,在四边形ABCD中,∠B=∠C=90°,EF垂直平分AD,垂足为F,交BC于点E,已知AB=3,BC=8,CD=5.求证:直线EF为四边形ABCD的“等分积周线”;
(3)如图3,在△ABC中,AB=BC=6,AC=8,请你画出△ABC的一条“等分积周线”EF(要求:直线EF不过△ABC的顶点,交边AC于点F,交边BC于点E),并说明EF为“等分积周线”的理由.
【答案】(1)不能,理由见解析;(2)见解析;(3)见解析
【解析】
(1)若直线CD平分△ABC的面积,那么S△ADC=S△DBC,得出AC≠BC,进而得出答案;
(2)根据勾股定理可得出:AB2+BE2=CE2+DC2,进而得出BE=5,CE=3,进而得出周长与面积分别相等得出答案即可;
(3)在AC上取一点F,使得FC=AB=6,在BC上取一点E,使得BE=2,作直线EF,则EF是△ABC的等分积周线,结合全等三角形的判定与性质得出答案.
(1)不能,
理由:如答图1,若直线CD平分△ABC的面积,那么S△ADC=S△DBC,
∴AD=BD,
∵AC≠BC,
∴AD+AC≠BD+BC,
∴过点C不能画出一条“等分积周线”
(2)如答图2,连接AE、DE,设BE=x,
∵EF垂直平分AD,∴AE=DE,AF=DF,S△AEF=S△DEF,
∵∠B=∠C=90°,AB=3,BC=8,CD=5,
∴Rt△ABE和Rt△DCE中,根据勾股定理可得出:
AB2+BE2=CE2+DC2,即32+x2=(8-x)2+52,
解得:x=5,所以BE=5,CE=3,
∴AB+BE=CE+DC,
S△ABE=S△DCE,
∴S四边形ABEF=S△ABE+S△AEF,
S四边形DCEF=S△DEF+S△DCE,
∴S四边形ABEF=S四边形DCEF,
AF+AB+BE=DF+EC+DC,
∴直线EF为四边形ABCD的“等分积周线”;
(3)如答图3,在AC上取一点F,使得FC=AB=6,在BC上取一点E,使得BE=2,
作直线EF,则EF是△ABC的等分积周线,
理由:由作图可得:AF=AC-FC=8-6=2,在CB上取一点G,使得CG=AF=2,则有AB+AF=CF+CG,
∵AB=BC,
∴∠A=∠C,
在△ABF和△CFG中,
,
∴△ABF≌△CFG(SAS),
∴S△ABF=S△CFG,
又易得BE=EG=2,
∴S△BFE=S△EFG,
∴S△EFC=S四边形ABEF,
AF+AB+BE=CE+CF=10,
∴EF是△ABC的等分积周线,
若如答图4,当BM=2cm,AN=6cm时,直线MN也是△ABC的等分积周线.(其实是同一条)
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB,于点E
(1)求证:△ACD≌△AED;
(2)若∠B=30°,CD=1,求BD的长。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系 xOy 中,△ABC 的三个顶点的坐标分别是 A(2,3),B(1,0),C(1,2).
(1)在图中画出△ABC 关于 y 轴对称的
(2)直接写出 三点的坐标:
( ), ( ), ( );
(3)如果要使以 B、C、D 为顶点的三角形与△ABC 全等,直接写出所有符合条件的点 D 坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在直角坐标系中,直线分别与轴、轴交于点、,点、分别在轴、轴上,且,,将绕原点顺时针转动一周,当与直线平行时点的坐标为________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】用适当的方法解下列方程:
(1)9x2﹣100=0; (2)x(x﹣1)=2(x﹣1);
(3)(x+2)(x+3)=20; (4)3x2﹣4x﹣1=0.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某同学在用描点法画二次函数的图象时,列出下面的表格:
… | … | ||||||
… | … |
根据表格提供的信息,下列说法错误的是( )
A. 该抛物线的对称轴是直线 B. 该抛物线与轴的交点坐标为
C. D. 若点是该抛物线上一点.则
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一幅长,宽的风景画的四周外围镶上一条宽度相同的金色纸边,制成一幅挂图,如果要求风景画的面积是整个挂图的.若设金色纸边的宽为.根据题意列方程,并整理得( )
A. x2-65x+350=0 B. x2+65x-350=0 C. x2+65x-225=0 D. x2-65x+225=0
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在矩形中,,,两条对角线相交于点.以、为邻边作第个平行四边形,对角线相交于点;再以、为邻边作第个平行四边形,对角线相交于点;再以、为邻边作第个平行四边形…依此类推.
求矩形的面积;
求第个平行四边形,第个平行四边形和第个平行四边形的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com