精英家教网 > 初中数学 > 题目详情

【题目】已知京润生物制品厂生产某种产品的年产量不超过800吨,生产该产品每吨所需相关费为10万元,且生产出的产品都能在当年销售完.产品每吨售价y(万元)与年产量x(吨)之间的函数关系如图所示

1)当该产品年产量为多少吨时,当年可获得7500万元毛利润?(毛利润=销售额﹣相关费用)

2)当该产品年产量为多少吨时,该厂能获得当年销售的是大毛利润?最大毛利润多少万元.

【答案】1)当该产品年产量为500吨时,当年可获得7500万元毛利润;(2)当该产品年产量为800吨时,该厂能获得当年销售的最大毛利润,最大毛利润是9600万元.

【解析】

1)根据题意可以求得产品每吨售价y(万元)与年产量x(吨)之间的函数关系式,从而可以列出相应的方程,本题得以解决;

2)根据题意和(1)中的函数关系式,可以求得当该产品年产量为多少吨时,该厂能获得当年销售的最大毛利润,最大毛利润多少万元.

1)设产品每吨售价y(万元)与年产量x(吨)之间的函数关系是yax+b

,得

y=﹣0.01x+30

(﹣0.01x+30x10x7500

解得,x1500x21500(舍去),

答:当该产品年产量为500吨时,当年可获得7500万元毛利润;

2)设该厂能获得当年销售的毛利润为w万元,

w=(﹣0.01x+30x10x=﹣0.01x10002+10000

0x800

∴当x800时,w取得最大值,此时w9600

答:当该产品年产量为800吨时,该厂能获得当年销售的最大毛利润,最大毛利润是9600万元.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】八(2)班组织了一次经典诵读比赛,甲、乙两队各10人的比赛成绩如下表(10分制):

7

8

9

7

10

10

9

10

10

10

10

8

7

9

8

10

10

9

10

9

(1)甲队成绩的中位数是 分,乙队成绩的众数是 分;

(2)计算乙队的平均成绩和方差;

(3)已知甲队成绩的方差是1.4,则成绩较为整齐的是 队.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,∠BAC的内角平分线与外角平分线分别交BCBC的延长线于点PQ

1)求∠PAQ的大小;

2)若点MPQ的中点,求证:PM2CM·BM

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】方格纸中每个小正方形的边长都是单位1,△OAB在平面直角坐标系中的位置如图所示,解答问题:

1)请按要求对△OAB作变换:以点O为位似中心,位似比为21,将△ABC在位似中心的异侧进行放大得到△OAB′.

2)写出点A′的坐标;

3)求△OAB'的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在平面直角坐标系中,为坐标原点,点的坐标为,点的坐标为,点的坐标为

1)求直线的函数解析式;

2)如图2,点在线段(不包括两点)上,连接轴交于点,连接的垂直平分线交于点,连接并延长到点,使,作轴于,连结.求证:

3)在(2)的条件下,当的边时,求点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线,其中,直线l是它的对称轴,把该抛物线沿着x轴水平向左平移个单位长度后,与x轴交于点ABB的左侧,如图1P为平移后的抛物线上位于第一象限内的一点

A的坐标为______

若点P的横坐标为,求出当m为何值时的面积最大,并求出这个最大值;

如图2APl于点D,当DAP的中点时,求证:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠C=90°,AD平分∠BACBC于点D,OAB上一点,经过点A,D⊙O分别交AB,AC于点E,F,连接OFAD于点G.

(1)求证:BC⊙O的切线;

(2)AB=x,AF=y,试用含x,y的代数式表示线段AD的长;

(3)BE=8,sinB=,求DG的长,

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明和小亮玩一个游戏:三张大小、质地都相同的卡片上分别标有数字2,3,4(背面完全相同),现将标有数字的一面朝下小明从中任意抽取一张记下数字后放回洗匀然后小亮从中任意抽取一张计算小明和小亮抽得的两个数字之和若和为奇数则小明胜;若和为偶数则小亮胜

(1)请你用画树状图或列表的方法求出这两数和为6的概率

(2)你认为这个游戏规则对双方公平吗?说说你的理由

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,是边长为的等边三角形,边在射线上,且,点从点出发,沿OM的方向以1cm/s的速度运动,当D不与点A重合时,将绕点C逆时针方向旋转60°得到,连接DE.

(1)如图1,求证:是等边三角形;

(2)如图2,当6<t<10时,DE是否存在最小值?若存在,求出DE的最小值;若不存在,请说明理由.

(3)当点D在射线OM上运动时是否存在以D,E,B为顶点的三角形是直角三角形?若存在,求出此时t的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案