精英家教网 > 初中数学 > 题目详情

【题目】已知:如图①,在平面直角坐标系xOy中,A(0,5),C( ,0),AOCD为矩形,AE垂直于对角线OD于E,点F是点E关于y轴的对称点,连AF、OF.

(1)求AF和OF的长;
(2)如图②,将△OAF绕点O顺时针旋转一个角α(0°<α<180°),记旋转中的△OAF为△OA′F′,在旋转过程中,设A′F′所在的直线与线段AD交于点P,与线段OD交于点Q,是否存在这样的P、Q两点,使△DPQ为等腰三角形?若存在,求出此时点P坐标;若不存在,请说明理由.

【答案】
(1)

解:如图①

∵OA=5,AD=OC=

由勾股定理可求.OD=

∵AE×OD=AO×AD,

∴AE=4,

∴OE= =3,

∵点F是点E关于y轴的对称点,

∴AF=AE=4,OF=OE=3;


(2)

解:如图②

若PD=PQ,

易得∠1=∠2=∠3,

∵∠1=∠A′,

∴∠3=∠A′,

∴OQ=OA′=5,

∴DQ=

过点P作PH⊥DQ,

∵cos∠1=

∴DP=

∴AP=

∴此时点P的坐标为( ,5);

如图③

∵点P在线段AD上,

∴∠1>∠PDQ,

∴QP,QD不会相等;

如图③,

若DP=DQ,

易得,∠1=∠2=∠3=∠4,

∵∠3=∠5+∠A′,∠A′=∠COD,

∴∠4=∠A′OQ,

∴A′Q=A′O=5,

∴F′Q=5﹣4=1,

∴OQ=

∴DP=DQ=

∴AP=AD﹣DP=

∴此时点P的坐标为:( ,5)


【解析】(1)运用勾股定理和面积相等法结合轴对称性质即可求解;(2)画出图形,根据PQ=PD,PD=DQ结合平行线的性质,对顶角相等和角的等量代换,运用勾股定理即可求解.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知a、b、c分别为△ABC的内角A、B、C的对边,btanA=2asinB.
(1)求A;
(2)若a= ,2b﹣c=4,求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC是边长为2的等边三角形,点D在边BC上,将△ABD沿着直线AD翻折,点B落在点B1处,如果B1D⊥AC,那么BD=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在△ABC中,AB=AC,过点A作AD⊥BC,垂足为点D,延长AD至点E,使DE= AD,过点A作AF∥BC,交EC的延长线于点F.
(1)设 = = ,用 的线性组合表示
(2)求 的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平行四边形ABCD中,E是CD的延长线上一点,BE与AD交于点F,若ED:DC=2:3,△DEF的面积为8,则平行四边形ABCD的面积为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,D、E分别是AB、AC的中点,连接DE,若SADE=1,则四边形DBCE的面积SDBCE=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题背景:数学活动课上老师出示问题,如图1,有边长为a的正方形纸片一张,三边长分别为a、b、c的全等直角三角形纸片两张,且b .请你用这三张纸片拼出一个图案,并将这个图案的某部分进行旋转或平移变换之后,提出一个问题(可以添加其他条件,例如可以给出a、b的值等等).
解决问题:

下面是两个学习小组拼出图案后提出的问题,请你解决他们提出的问题.
(1)“爱心”小组提出的问题是:如图2,将△DFC绕点F逆时针旋转,使点D恰好落在AD边上的点D′处,猜想此时四边形AEFD′是什么特殊四边形,并加以证明;
(2)“希望”小组提出的问题是:如图3,点M为BE中点,将△DCF向左平移至DF恰好过点M时停止,且补充条件a=6,b=2,求△DCF平移的距离.
自主创新:
(3)请你仿照上述小组的同学,在下面图4的空白处用实线画出你拼出的图案,用虚线画出变换图,并在横线处写出你提出的问题.(不必解答)
你提出的问题:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,第一个正方形ABCD的位置如图所示,点A的坐标为(2,0),点D的坐标为(0,4).延长CB交x轴于点A1 , 作第二个正方形A1B1C1C;延长C1B1交x轴于点A2 , 作第三个正方形A2B2C2C1 , …,按这样的规律进行下去,第2016个正方形的面积为(
A.20×( 4030
B.20×( 4032
C.20×( 2016
D.20×( 2015

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,A,B是直线l上的两点,AB=4厘米,过l外一点C作CD∥l,射线BC与l所组成的锐角为60°,线段BC=2厘米,动点P、Q分别从B、C同时出发,P以1厘米/秒的速度,沿由B向C的方向运动;Q以2厘米/秒的速度,沿由C向D的方向运动,设P、Q运动的时间为t秒,当t>2时,PA交CD于点E.
(1)用含t的代数式分别表示CE和QE的长;
(2)求△APQ的面积s与t的函数表达式;
(3)当QE恰好平分△APQ的面积时,QE的长是多少?

查看答案和解析>>

同步练习册答案