精英家教网 > 初中数学 > 题目详情

【题目】已知数列{an}满足 ,(n∈N+). (Ⅰ)求数列{an}的通项公式;
(Ⅱ)设 ,数列{bn}的前n项和Sn , 求证:

【答案】解:(I)数列{an}满足 ,(n∈N+). ∴n≥2时,a1+3a2+…+3n﹣2an﹣1= ,相减可得:3n﹣1an= ,∴an=
n=1时,a1=
综上可得:an=
(II)证明:
∴b1= =
n≥2时,bn= =
∴Sn= + + +…+
= +
【解析】(I)数列{an}满足 ,(n∈N+).n≥2时,a1+3a2+…+3n﹣2an﹣1= ,相减可得:3n﹣1an= ,可得an . n=1时,a1= .(II) ,b1= .n≥2时,bn= = .利用裂项求和方法与数列的单调性即可得出.
【考点精析】本题主要考查了数列的前n项和和数列的通项公式的相关知识点,需要掌握数列{an}的前n项和sn与通项an的关系;如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】2016年二十国集团领导人峰会(简称“G20峰会”)于9月4日至5日在浙江杭州召开,为保证会议期间交通畅通,杭州市已发布9月1日至7日为“G20峰会”调休期间.据报道对于杭州市民:浙江省旅游局联合11个市开展一系列旅游惠民活动,活动内容为:“本省游”、“黄山游”、“黔东南游”,某旅游公司为了解群众出游情况,拟采用分层抽样的方法从有意愿“本省游”、“黄山游”、“黔东南游”这三个区域旅游的群众中抽取7人进行某项调查,已知有意愿参加“本省游”、“黄山游”、“黔东南游”的群众分别有360,540,360人.
(1)求从“本省游”、“黄山游”、“黔东南游”,三个区域旅游的群众分别抽取的人数;
(2)若从抽得的7人中随机抽取2人进行调查,用列举法计算这2人中至少有1人有意愿参加“本省游”的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】襄阳农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温度与实验室每天每100颗种子中的发芽数,得到如下数据:

日期

12月1日

12月2日

12月3日

12月4日

12月5日

温差x(℃)

10

11

13

12

8

发芽数y(颗)

23

26

32

26

16

襄阳农科所确定的研究方案是:先从这5组数据中选取2组,用剩下的3组数据求线性回归方程,再对被选取的2组数据进行检验.
(1)求选取的2组数据恰好是不相邻的2天数据的概率;
(2)若选取的是12月1日与12月5日这两组数据,情根据12月2日至12月4日的数据,求y关于x的线性回归方程 = x+
(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过1颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠? 注: = = =

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线x2=2py(p>0)的焦点为F,直线x=4与x轴的交点为P,与抛物线的交点为Q,且

(1)求抛物线的方程;
(2)如图所示,过F的直线l与抛物线相交于A,D两点,与圆x2+(y﹣1)2=1相交于B,C两点(A,B两点相邻),过A,D两点分别作我校的切线,两条切线相交于点M,求△ABM与△CDM的面积之积的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知Rt△ABC,AB=3,BC=4,CA=5,P为△ABC外接圆上的一动点,且 的最大值是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,圆ρ=4cosθ与圆ρ=2sinθ交于O,A两点. (Ⅰ)求直线OA的斜率;
(Ⅱ)过O点作OA的垂线分别交两圆于点B,C,求|BC|.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在如图所示的几何体中,平面ADNM⊥平面ABCD,四边形ABCD是菱形,ADNM是矩形, ,AB=2,AM=1,E是AB的中点.
(1)求证:平面DEM⊥平面ABM;
(2)在线段AM上是否存在点P,使二面角P﹣EC﹣D的大小为 ?若存在,求出AP的长;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知函数f(x)=|x﹣2|+|2x+a|,a∈R. (Ⅰ)当a=1时,解不等式f(x)≥5;
(Ⅱ)若存在x0满足f(x0)+|x0﹣2|<3,求a的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC 中,∠C=90°,BC=3,D,E分别在AB、AC上,将△ADE沿DE翻折后,点A落在点A′处,若A′为CE的中点,则折痕DE的长为(
A.
B.3
C.2
D.1

查看答案和解析>>

同步练习册答案