【题目】在如图所示的几何体中,平面ADNM⊥平面ABCD,四边形ABCD是菱形,ADNM是矩形, ,AB=2,AM=1,E是AB的中点.
(1)求证:平面DEM⊥平面ABM;
(2)在线段AM上是否存在点P,使二面角P﹣EC﹣D的大小为 ?若存在,求出AP的长;若不存在,请说明理由.
【答案】
(1)证明:∵ABCD是菱形,∴AD=AB,∵∠DAB=60°,∴△ABD为等边三角形,
E为AB中点,∴DE⊥AB,∴DE⊥CD,
∵ADMN是矩形,∴ND⊥AD,
又平面ADMN⊥平面ABCD,平面ADMN∩平面ABCD=AD,
∴ND⊥平面ABCD,∴ND⊥DE,
∵CD∩ND=D,∴DE⊥平面NDC,
∵DE平面MDE,∴平面MDE⊥平面NDC.
因为面ABM∥面NDC,∴平面DEM⊥平面ABM
(2)解:设存在P符合题意.
由(Ⅰ)知,DE、DC、DN两两垂直,以D为原点,建立空间直角坐标系D﹣xyz(如图),
则D(0,0,0),A( ,﹣1,0),E( ,0,0),C(0,2,0),P( ,﹣1,h)(0≤h≤1).
∴ =(0,﹣1,h), =(﹣ ,2,0),设平面PEC的法向量为 =(x,y,z),
则 令x=2h,则平面PEC的一个法向量为 =(2h, h, )
取平面ECD的法向量 =(0,0,1),
cos45°= ,解得h= ∈[0,1],
即存在点P,使二面角P﹣EC﹣D的大小为 ,此时AP= .
【解析】(1)推导出DE⊥CD,ND⊥AD,从而ND⊥DE,进而DE⊥平面NDC,由此能证明平面MAE⊥平面NDC.(2)以D为原点,建立空间直角坐标系D﹣xyz,求出平面PEC的一个法向量、平面ECD的法向量.利用向量的夹角公式,建立方程,即可得出结论.
科目:初中数学 来源: 题型:
【题目】据某市地产数据研究院的数据显示,2016年该市新建住宅销售均价走势如图所示,为抑制房价过快上涨,政府从8月份采取宏观调控措施,10月份开始房价得到很好的抑制.
(Ⅰ)地产数据研究院研究发现,3月至7月的各月均价y(万元/平方米)与月份x之间具有较强的线性相关关系,试建立y关于x的回归方程(系数精确到0.01),政府若不调控,依次相关关系预测第12月份该市新建住宅销售均价;
(Ⅱ)地产数据研究院在2016年的12个月份中,随机抽取三个月份的数据作样本分析,若关注所抽三个月份的所属季度,记不同季度的个数为X,求X的分布列和数学期望.
参考数据: =25, =5.36, =0.64
回归方程 = x+ 中斜率和截距的最小二乘估计公式分别为:
= , = ﹣ .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等腰三角形ABC中,已知|AB|=|AC|=1,∠A=120°,E,F分别是AB,AC上的点,且 ,(其中λ,μ∈(0,1)),且λ+4μ=1,若线段EF,BC的中点分别为M,N,则 的最小值为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知向量 ,向量 如图表示,则( )
A.?λ>0,使得
B.?λ>0,使得< , >=60°
C.?λ<0,使得< , >=30°
D.?λ>0,使得 为不为0的常数)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小敏从地出发向地行走,同时小聪从地出发向地行走,如图所示,相交于点 的两条线段分别表示小敏、小聪离地的距离(km)与已用时间(h)之间的关系,则________时,小敏、小聪两人相距7 km.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】△ABC在平面直角坐标系中的位置如图所示.
(1)作△ABC关于原点O成中心对称的△A1B1C1 .
(2)请写出点B关于y轴对称的点B2的坐标 . 若将点B2向下平移h单位,使其落在△A1B1C1内部(不包括边界),直接写出h的值(写出满足的一个即可).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线.
(1)求证:△ADE≌△CBF
(2)若∠ADB是直角,则四边形BEDF是什么四边形?证明你的结论.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com