精英家教网 > 初中数学 > 题目详情

【题目】已知向量 ,向量 如图表示,则(
A.?λ>0,使得
B.?λ>0,使得< >=60°
C.?λ<0,使得< >=30°
D.?λ>0,使得 为不为0的常数)

【答案】D
【解析】解:向量 ,向由图可得 =(5,5)﹣(1,2)=(4,3). 对于A,若 ,则(1,λ)(4,3)=0,解得 ,故错;
对于B,若< >=60°,则 ,得11λ2+96λ+39=0,方程无解,故错;
对于C,若< >=30°,则 ,得39λ2﹣96λ+11=0,方程无解,故错;
对于D,若 为不为0的常数),则(1,λ)=c(4,3),解得λ= ,故正确;
故选:D
【考点精析】掌握平面向量的基本定理及其意义是解答本题的根本,需要知道如果是同一平面内的两个不共线向量,那么对于这一平面内的任意向量,有且只有一对实数,使

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知直线l的极坐标方程为ρsin(θ+ )= ,圆C的参数方程为: (其中θ为参数).
(1)判断直线l与圆C的位置关系;
(2)若椭圆的参数方程为 (φ为参数),过圆C的圆心且与直线l垂直的直线l′与椭圆相交于A,B两点,求|AB|.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线x2=2py(p>0)的焦点为F,直线x=4与x轴的交点为P,与抛物线的交点为Q,且

(1)求抛物线的方程;
(2)如图所示,过F的直线l与抛物线相交于A,D两点,与圆x2+(y﹣1)2=1相交于B,C两点(A,B两点相邻),过A,D两点分别作我校的切线,两条切线相交于点M,求△ABM与△CDM的面积之积的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,圆ρ=4cosθ与圆ρ=2sinθ交于O,A两点. (Ⅰ)求直线OA的斜率;
(Ⅱ)过O点作OA的垂线分别交两圆于点B,C,求|BC|.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在如图所示的几何体中,平面ADNM⊥平面ABCD,四边形ABCD是菱形,ADNM是矩形, ,AB=2,AM=1,E是AB的中点.
(1)求证:平面DEM⊥平面ABM;
(2)在线段AM上是否存在点P,使二面角P﹣EC﹣D的大小为 ?若存在,求出AP的长;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】中央政府为了应对因人口老龄化而造成的劳动力短缺等问题,拟定出台“延迟退休年龄政策”,为了了解人们对“延迟退休年龄政策”的态度,责成人社部进行调研,人社部从网上年龄在15~65岁的人群中随机调查100人,调查数据的频率分布直方图和支持“延迟退休”的人数与年龄的统计结果如下

年龄

[15,25)

[25,35)

[35,45)

[45,55)

[55,65]

支持“延迟退休”的人数

15

5

15

28

17


(1)由以上统计数据填2×2列联表,并判断是否95%的把握认为以45岁为界点的不同人群对“延迟退休年龄政策”的支持有差异;

45岁以下

45岁以上

总计

支持

不支持

总计


(2)若以45岁为分界点,从不支持“延迟退休”的人中按分层抽样的方法抽取8人参加某项活动,现从这8人中随机抽2人. ①抽到1人是45岁以下时,求抽到的另一人是45岁以上的概率;
②记抽到45岁以上的人数为X,求随机变量X的分布列及数学期望.

P(K2≥k0

0.100

0.050

0.010

0.001

k0

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知函数f(x)=|x﹣2|+|2x+a|,a∈R. (Ⅰ)当a=1时,解不等式f(x)≥5;
(Ⅱ)若存在x0满足f(x0)+|x0﹣2|<3,求a的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线 x轴的正半轴于点A , 点B( a)在抛物线上,点C是抛物线对称轴上的一点,连接ABBC , 以ABBC为邻边作□ABCD , 记点C纵坐标为n

(1)求a的值及点A的坐标;
(2)当点D恰好落在抛物线上时,求n的值;
(3) 记CD与抛物线的交点为E,连接AE,BE,当三角形AEB的面积为7时,n=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】直线y=x﹣6与x轴、y轴分别交于A、B两点,点E从B点出发,以每秒1个单位长度的速度沿线段BO向O点移动(不考虑点E与B、O两点重合的情况),过点E作EF∥AB,交x轴于点F,将四边形ABEF沿直线EF折叠后,与点A对应的点记作点C,与点B对应的点记作点D,得到四边形CDEF,设点E的运动时间为t秒.

(1)画出当t=2时,四边形ABEF沿直线EF折叠后的四边形CDEF(不写画法)
(2)在点E运动过程中,CD交x轴于点G,交y轴于点H,试探究t为何值时,△CGF的面积为
(3)设四边形CDEF落在第一象限内的图形面积为S,求S关于t的函数解析式,并求出S的最大值.

查看答案和解析>>

同步练习册答案