精英家教网 > 初中数学 > 题目详情

【题目】已知直线l的极坐标方程为ρsin(θ+ )= ,圆C的参数方程为: (其中θ为参数).
(1)判断直线l与圆C的位置关系;
(2)若椭圆的参数方程为 (φ为参数),过圆C的圆心且与直线l垂直的直线l′与椭圆相交于A,B两点,求|AB|.

【答案】
(1)解:将直线l的极坐标方程 ,化为直角坐标方程:x+y﹣1=0.

将圆C的参数方程化为普通方程:x2+(y+2)2=4,圆心为C(0,﹣2),半径r=2.

∴圆心C到直线l的距离为d= >r=2,

∴直线l与圆C相离.


(2)解:将椭圆的参数方程化为普通方程为

∵直线l:x+y﹣1=0的斜率为k1=﹣1,

∴直线l'的斜率为k2=1,即倾斜角为

则直线l'的参数方程为 ,(t为参数),

(t为参数),

把直线l'的参数方程 代入

整理得7t2﹣16 t+8=0.(*)

由于△=(﹣16 2﹣4×7×8>0,

故可设t1,t2是方程(*)的两个不等实根,则有t1t2=

|AB|=


【解析】(1)将直线l的极坐标方程化为直角坐标方程,将圆C的参数方程化为普通方程,求出圆心C到直线l的距离,由此得到直线l与圆C相离.(2)将椭圆的参数方程化为普通方程为 ,求出直线l'的参数方程,把直线l'的参数方程代入椭圆的普通方程,得7t2﹣16 t+8=0,由此利用根的判别式、韦达定理、弦长公式能求出|AB|.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】一次函数y=ax+b和反比例函数y= 在同一平面直角坐标系中的图象如图所示,则二次函数y=ax2+bx+c的图象大致为(  )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】设正实数x,y,z满足x2﹣3xy+4y2﹣z=0.则当 取得最大值时, 的最大值为(
A.0
B.1
C.
D.3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】设集合 ,B={(x,y)|y=3x},则A∩B的子集的个数是(
A.4
B.3
C.2
D.1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】据某市地产数据研究院的数据显示,2016年该市新建住宅销售均价走势如图所示,为抑制房价过快上涨,政府从8月份采取宏观调控措施,10月份开始房价得到很好的抑制.
(Ⅰ)地产数据研究院研究发现,3月至7月的各月均价y(万元/平方米)与月份x之间具有较强的线性相关关系,试建立y关于x的回归方程(系数精确到0.01),政府若不调控,依次相关关系预测第12月份该市新建住宅销售均价;
(Ⅱ)地产数据研究院在2016年的12个月份中,随机抽取三个月份的数据作样本分析,若关注所抽三个月份的所属季度,记不同季度的个数为X,求X的分布列和数学期望.
参考数据: =25, =5.36, =0.64
回归方程 = x+ 中斜率和截距的最小二乘估计公式分别为:
= =

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】设函数f(x)=|x2﹣2x﹣1|,若m>n>1,且f(m)=f(n),则mn的取值范围为(
A.
B.
C.(1,3)
D.(1,3]

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,等边ABC的边长为4cm,动点D从点B出发,沿射线BC方向移动,以AD为边作等边ADE

1)在点D运动的过程中,点E能否移动至直线AB上?若能,求出此时BD的长;若不能,请说明理由;

2)如图2,在点D从点B开始移动至点C的过程中,以等边ADE的边ADDE为边作ADEF

ADEF的面积是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由;

若点MNP分别为AEADDE上动点,直接写出MN+MP的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知等腰三角形的一边长为2,周长为8,那么它的腰长为 ( )

A. 2 B. 3 C. 2或3 D. 不能确定

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知向量 ,向量 如图表示,则(
A.?λ>0,使得
B.?λ>0,使得< >=60°
C.?λ<0,使得< >=30°
D.?λ>0,使得 为不为0的常数)

查看答案和解析>>

同步练习册答案