【题目】如图,已知抛物线y=-x2+bx+c与一直线相交于A(-1,0),C(2,3)两点,与y轴交于点N,其顶点为D.
(1)求抛物线及直线AC的函数关系式;
(2)设点M(3,m),求使MN+MD的值最小时m的值;
(3)若抛物线的对称轴与直线AC相交于点B,E为直线AC上的任意一点,过点E作EF∥BD交抛物线于点F,以B,D,E,F为顶点的四边形能否为平行四边形?若能,求点E的坐标;若不能,请说明理由.
【答案】(1)抛物线的解析式为y=-x2+2x+3;直线AC的解析式为y=x+1;(2);(3)E(0,1)或或.
【解析】
(1)将点A、C的坐标代入抛物线解析式可得出b、c的值,继而得出抛物线解析式,利用待定系数法可求出AC的函数解析式;
(2)利用轴对称求最短路径的知识,找到N点关于直线x=3的对称点N′,连接N'D,N'D与直线x=3的交点即是点M的位置,继而求出m的值.
(3)设出点E的坐标,分情况讨论,①当点E在线段AC上时,点F在点E上方,②当点E在线段AC(或CA)延长线上时,点F在点E下方,根据平行四边形的性质表示出F的坐标,将点F的坐标代入抛物线解析式可得出x的值,继而求出点E的坐标.
(1)由抛物线y=-x2+bx+c过点A(-1,0)及C(2,3),可得:
,
解得:,
故抛物线为y=-x2+2x+3,
设直线AC解析式为y=kx+n,将点A(-1,0)、C(2,3)代入得:
,
解得:,
故直线AC为y=x+1.
(2)作N点关于直线x=3的对称点N′,则N′(6,3),由(1)得D(1,4),
可求出直线DN′的函数关系式为,
当M(3,m)在直线DN′上时,MN+MD的值最小,
则.
(3)由(1)、(2)得D(1,4),B(1,2)
点E在直线AC上,设E(x,x+1),
①当点E在线段AC上时,点F在点E上方,则F(x,x+3),
∵F在抛物线上,
∴x+3=-x2+2x+3
解得,x=0或x=1(舍去),
则点E的坐标为:(0,1).
②当点E在线段AC(或CA)延长线上时,点F在点E下方,则F(x,x-1),
∵点F在抛物线上,
∴x-1=-x2+2x+3,
解得x=或x=,
所以,y=或y=
即点E的坐标为:(,)或(,)
综上可得满足条件的点E为E(0,1)或(,)或(,).
科目:初中数学 来源: 题型:
【题目】如图,海中有两个小岛,,某渔船在海中的处测得小岛D位于东北方向上,且相距,该渔船自西向东航行一段时间到达点处,此时测得小岛恰好在点的正北方向上,且相距,又测得点与小岛相距.
(1)求的值;
(2)求小岛,之间的距离(计算过程中的数据不取近似值).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,ABCD的顶点B,C在x轴上,A,D两点分别在反比例函数y=﹣(x<0)与y=(x>0)的图象上,若ABCD的面积为4,则k的值为:_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,,,,P是BC上一动点,过P作AP的垂线交CD于E,将翻折得到,延长FP交AB于H,连结AE,PE交AC于G.
(1)求证;
(2)当时,求AE的长;
(3)当时,求AG的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】现如今,“垃圾分类”意识已深入人心,垃圾一般可分为:可回收物、厨余垃圾、有害垃圾、其它垃圾.其中甲拿了一袋垃圾,乙拿了两袋垃圾.
(1)直接写出甲所拿的垃圾恰好是“厨余垃圾”的概率;
(2)求乙所拿的两袋垃圾不同类的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点P是矩形ABCD的边上一动点,矩形两边长AB、BC长分别为15和20,那么P到矩形两条对角线AC和BD的距离之和是( )
A.6B.12C.24D.不能确定
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直线y=kx+b与反比例函数y=(x>0)的图象交于A(1,4)、B(4,1)两点,与x轴交于C点.
(1)求一次函数与反比例函数的解析式;
(2)根据图象直接回答:在第一象限内,当x取何值时,一次函数值大于反比例函数值?
(3)点P是y=(x>0)图象上的一个动点,作PQ⊥x轴于Q点,连接PC,当S△CPQ=S△CAO时,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】关于的一元二次方程有两个不相等且非零的实数根,探究满足的条件.
小华根据学习函数的经验,认为可以从二次函数的角度研究一元二次方程的根的符号。下面是小华的探究过程:第一步:设一元二次方程对应的二次函数为;
第二步:借助二次函数图象,可以得到相应的一元二次方程中满足的条件,列表如下表。
方程两根的情况 | 对应的二次函数的大致图象 | 满足的条件 |
方程有两个不相等的负实根 | ||
①_______ | ||
方程有两个不相等的正实根 | ② | ③____________ |
(1)请将表格中①②③补充完整;
(2)已知关于的方程,若方程的两根都是正数,求的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com