精英家教网 > 初中数学 > 题目详情

【题目】如图,△ABC中,A(﹣2,3),B(﹣3,1),C(﹣1,2).

(1)①将△ABC向右平移4个单位长度,画出平移后的△A1B1C1
②画出△ABC关于x轴对称的△A2B2C2
③将△ABC绕原点O旋转180°,画出旋转后的△A3B3C3
(2)在△A1B1C1 , △A2B2C2 , △A3B3C3中,△与△成轴对称,对称轴是;△与△成中心对称,对称中心的坐标是

【答案】
(1)解:①△A1B1C1如图所示

②△A2B2C2如图所示

③△A3B3C3如图所示


(2)A2B2C2 ;A3B3C3 ;y轴;A1B1C1 ;A3B3C3 ;(2,0)
【解析】解:(1)如图所示;(2)由图可知:△A2B2C2与△A3B3C3呈轴对称,且对称轴为y轴;
△A1B1C1与△A3B3C3呈中心对称,且对称中心为(2,0).
所以答案是:A2B2C2 , A3B3C3 , y轴;A1B1C1 , A3B3C3 , (2,0).

【考点精析】根据题目的已知条件,利用作轴对称图形的相关知识可以得到问题的答案,需要掌握画对称轴图形的方法:①标出关键点②数方格,标出对称点③依次连线.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AC=BC,∠ACB=90°,点D△ABC内一点,且BD=AD.

(1)求证:CD⊥AB;

(2)∠CAD=15°,EAD延长线上的一点,且CE=CA.

求证:DE平分∠BDC;

若点MDE上,且DC=DM,请判断ME、BD的数量关系,并给出证明;

N为直线AE上一点,且△CEN为等腰三角形,直接写出∠CNE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解下列方程
(1)x(x﹣3)+x﹣3=0
(2)4x2+12x+9=81.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,,点出发以每秒个单位的速度在线段上从点向点运动,点同时从出发以每秒个单位的速度在线段上向点运动,连接,设两点运动时间为.

(1)运动   秒时,

(2)运动多少秒时,能成立;

(3),求的大小.(用含的式子表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(9)如图在平面直角坐标系中,Rt△ABC的三个顶点分别是A(-3,2),B(0,4),C(0,2).

(1)△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C;平移△ABC,A的对应点A2的坐标为(0,4),画出平移后对应的△A2B2C2

(2)若将△A1B1C绕某一点旋转可以得到△A2B2C2请直接写出旋转中心的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,长方形ABCD中,AB=8,BC=4,将长方形沿AC折叠,点D落在D′处.

(1)求证:AFD′≌△CFB;

(2)求线段BF的长度;

(3)试求出重叠部分AFC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,水库大坝的横截面是梯形,坝顶AD宽5米,坝高10米,斜坡CD的坡角为45°,斜坡AB的坡度i=1:1.5,那么坝底BC的长度为米.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是二次函数y=ax2+bx+c的图象的一部分,对称轴是直线x=1.
①b2>4ac;
②4a+2b+c<0;
③不等式ax2+bx+c>0的解集是x≥3.5;
④若(﹣2,y1),(5,y2)是抛物线上的两点,则y1<y2
上述4个判断中,正确的是(

A.①②
B.①②④
C.①③④
D.②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】关于x的一元函数y=﹣2x+m和反比例函数y= 的图象都经过点A(﹣2,1).
(1)求一次函数和反比例函数的解析式;
(2)求一次函数与反比例函数的另一个交点B的坐标;
(3)求△AOB的面积.

查看答案和解析>>

同步练习册答案