精英家教网 > 初中数学 > 题目详情

【题目】⊙O的半径为5,AB是⊙O的直径,点C在⊙O上,点D在直线AB上.
(1)如图(1),已知∠BCD=∠BAC,求证:CD是⊙O的切线;
(2)如图(2),CD与⊙O交于另一点E.BD:DE:EC=2:3:5,求圆心O到直线CD的距离;
(3)若图(2)中的点D是直线AB上的动点,点D在运动过程中,会出现C,D,E在三点中,其中一点是另外两点连线的中点的情形,问这样的情况出现几次?

【答案】
(1)证明:如图(1),连接OC,

∵OA=OC,

∴∠OAC=∠OCA,

又∵AB是⊙O的直径,

∴∠ACB=90°,

又∵∠BCD=∠BAC=∠OCA,

∴∠BCD+∠OCB=90°,即OC⊥CD,

∴CD是⊙O的切线


(2)解:∵∠ADE=∠CDB,∠BCD=∠EAD,

∴△BCD∽△EAD,

又∵BD:DE:EC=2:3:5,⊙O的半径为5,

∴BD=2,DE=3,EC=5,

如图(2),连接OC、OE,则△OEC是等边三角形,

作OF⊥CE于F,则EF= CE= ,∴OF=

∴圆心O到直线CD的距离是


(3)解:这样的情形共有出现三次:

当点D在⊙O外时,点E是CD中点,有以下两种情形,如图1、图2;

当点D在⊙O内时,点D是CE中点,有以下一种情形,如图3.


【解析】(1)连接OC,根据弦切角定理和圆的性质可得到∠BCD=∠BAC=∠OCA,结合圆周角定理可求得∠OCD=90°,可证明CD是切线;(2)先证明△BCD∽△EAD,结合条件可求得BD=2,DE=3,EC=5,在△OBC中可求得O到CD的距离;(3)分点D在⊙O外和点D在⊙O内两种情况,当D在⊙O外时又分D在A点左边和D在B点右边两种情况,当D在⊙O内时只有一种,结合图形可给出答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】规定两数a、b之间的一种运算,记作(a,b):如果,那么(a,b)=c.

例如:因为,所以(2,8)=3.

(1)根据上述规定,填空:

(5,125)= ,(-2,4)= ,(-2,-8)=

(2)小明在研究这种运算时发现一个现象:,他给出了如下的证明:

,则,即

,即

请你尝试运用上述这种方法说明下面这个等式成立的理由.

(4,5)+(4,6)=(4,30)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一艘海轮在A点时测得灯塔C在它的北偏东42°方向上,它沿正东方向航行80海里后到达B处,此时灯塔C在它的北偏西55°方向上.

(1)求海轮在航行过程中与灯塔C的最短距离(结果精确到0.1);
(2)求海轮在B处时与灯塔C的距离(结果保留整数).
(参考数据:sin55°≈0.819,cos55°≈0.574,tan55°≈1.428,tan42°≈0.900,tan35°≈0.700,tan48°≈1.111)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】【问题情境】

课外兴趣小组活动时,老师提出了如下问题:

如图①ABC中,若AB=12,AC=8,求BC边上的中线AD的取值范围.

小明在组内经过合作交流,得到了如下的解决方法:延长AD至点E,使DEAD,连接BE.请根据小明的方法思考:

(1)由已知和作图能得到ADC≌△EDB,依据是

A.SSS B.SAS C.AAS D.HL

(2)由三角形的三边关系可求得AD的取值范围是

解后反思:题目中出现中点”、“中线等条件,可考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集中到同一个三角形之中.

【初步运用】

如图②ADABC的中线,BEACE,交ADF,且AEEF.若EF=3,EC=2,求线段BF的长.

【灵活运用】

如图③,在ABC中, A=90°,DBC中点, DEDFDEAB于点EDFAC于点F,连接EF.试猜想线段BE、CF、EF三者之间的等量关系,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某班毕业联欢会设计的即兴表演节目的摸球游戏,游戏采用一个不透明的盒子,里面装有五个分别标有数字1、2、3、4、5的乒乓球,这些球除数字外,其它完全相同,游戏规则是参加联欢会的50名同学,每人将盒子乒乓球摇匀后闭上眼睛从中随机一次摸出两个球(每位同学必须且只能摸一次).若两球上的数字之和是偶数就给大家即兴表演一个节目;否则,下个同学接着做摸球游戏,依次进行.

(1)用列表法或画树状图法求参加联欢会同学表演即兴节目的概率;

(2)估计本次联欢会上有多少个同学表演即兴节目.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠ABE=ACD=RtAE=ADABC=ACB.求证:∠BAE=CAD

请补全证明过程,并在括号里写上理由.

证明:在ABC中,

∵∠ABC=ACB

AB= ( )

RtABERtACD中,

=AC =AD

RtABERtACD( )

∴∠BAE=CAD( )

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某县为了了解初中生对安全知识掌握情况,抽取了50名初中生进行安全知识测试,并将测试成绩进行统计分析,绘制成了频数分布表和频数分布直方图(未完成). 安全知识测试成绩频数分布表

组别

成绩x(分数)

组中值

频数(人数)

1

90≤x<100

95

10

2

80≤x<90

85

25

3

70≤x<80

75

12

4

60≤x<70

65

3


(1)完成频数分布直方图;
(2)这个样本数据的中位数在第组;
(3)若将各组的组中值视为该组的平均成绩,则此次测试的平均成绩为
(4)若将90分以上(含90分)定为“优秀”等级,则该县10000名初中生中,获“优秀”等级的学生约为人.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(问题探究)

(1)如图①已知锐角△ABC,分别以AB、AC为腰,在△ABC的外部作等腰RtABDRtACE,连接CD、BE,是猜想CD、BE的大小关系_____________ ;(不必证明)

(深入探究)

(2)如图②△ABC、ADE都是等腰直角三角形,点D在边BC上(不与B、C重合),连接EC,则线段 BC,DC,EC 之间满足的等量关系式为________________ ;(不必证明) 线段 AD2,BD2,CD2之间满足的等量关系并证明你的结论

(拓展应用)

(3)如图③在四边形 ABCD ABC=ACB=ADC=45°. BD=9,CD=3,

AD 的长.

① ② ③

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某学校举行“社会主义核心价值观”知识比赛活动,全体学生都参加比赛,学校对参赛学生均给与表彰,并设置一、二、三等奖和纪念奖共四个奖项,赛后将获奖情况绘制成如下所示的两幅不完整的统计图,请根据图中所给的信息,解答下列问题:
(1)该校共有名学生;
(2)在图①中,“三等奖”所对应扇形的圆心角度数是
(3)将图②补充完整;
(4)从该校参加本次比赛活动的学生中随机抽查一名.求抽到获得一等奖的学生的概率.

查看答案和解析>>

同步练习册答案