精英家教网 > 初中数学 > 题目详情

【题目】如图,BA1CA1分别是ABC的内角平分线和外角平分线,BA2是∠A1BD的角平分线,CA2是∠A1CD的角平分线,BA3是∠A2BD的角平分线,CA3是∠A2CD的角平分线,若∠A1,则∠A2018_____

【答案】

【解析】

根据角平分线的定义可得∠A1BC=ABC,∠A1CD=ACD,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ACD=∠A+∠ABC,∠A1CD=∠A1BC+∠A1,整理即可得解,同理求出∠A2,可以发现后一个角等于前一个角的,根据此规律即可得解.

解:∵A1B是∠ABC的平分线,A1C是∠ACD的平分线,

∴∠A1BC=ABC,∠A1CD=ACD

又∵∠ACD=A+ABC,∠A1CD=A1BC+A1

(∠A+ABC=ABC+A1

∴∠A1=A

∵∠A1

同理理可得∠A2=A1=α

则∠A2018=

故答案为:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图(单位:cm).等腰直角ABC2cm/s的速度沿着直线向正方形移动,直到ABCD重合.设x秒时,三角形与正方形重叠部分的面积为ycm2

⑴写出yx的关系式;

⑵当x=3.5时,y是多少;

⑶当重叠部分的面积是正方形面积的一半时,三角形移动了多少时间;

⑷正方形边长改为30cm,等腰直角三角形大小不变,移动到ABEF重合为止.

x的取值范围是

②当x满足 时,y=50

③写出当15≤x≤20时,yx的关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在长方形ABCD中放入六个形状、大小相同的长方形,所标尺寸如图所示,试求图中阴影部分的总面积_____平方厘米.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某玩具厂生产一种玩具,本着控制固定成本,降价促销的原则,使生产的玩具能够全部售出.据市场调查,若按每个玩具280元销售时,每月可销售300个.若销售单价每降低1元,每月可多售出2个.据统计,每个玩具的固定成本Q(元)与月产销量y(个)满足如下关系:

月产销量y(个)

160

200

240

300

每个玩具的固定成本Q(元)

60

48

40

32


(1)写出月产销量y(个)与销售单价x (元)之间的函数关系式;
(2)求每个玩具的固定成本Q(元)与月产销量y(个)之间的函数关系式;
(3)若每个玩具的固定成本为30元,则它占销售单价的几分之几?
(4)若该厂这种玩具的月产销量不超过400个,则每个玩具的固定成本至少为多少元?销售单价最低为多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(11),第2次接着运动到点(20),第3次接着运动到点(32),,按这样的运动规律,经过第2017次运动后,动点P的坐标是______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在同一直角坐标系中,函数y=kx﹣k与y= (k≠0)的图象大致是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,PA、PB、AB都与⊙O相切,∠P=60°,则∠AOB等于( )

A.50°
B.60°
C.70°
D.70°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,O是坐标原点,ABCD的顶点A的坐标为(﹣2,0),点D的坐标为(0,2 ),点B在x轴的正半轴上,点E为线段AD的中点

(1)如图1,求∠DAO的大小及线段DE的长;
(2)过点E的直线l与x轴交于点F,与射线DC交于点G.连接OE,△OEF′是△OEF关于直线OE对称的图形,记直线EF′与射线DC的交点为H,△EHC的面积为3
①如图2,当点G在点H的左侧时,求GH,DG的长;
②当点G在点H的右侧时,求点F的坐标(直接写出结果即可).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某校有一块长为(5a+b)米,宽为(3a+b)米的长方形空地,中间是边长(ab)米的正方形草坪,其余为活动场地,学校计划将活动场地(阴影部分)进行硬化.

1)用含ab的代数式表示需要硬化的面积并化简;

2)当a=5b=2时,求需要硬化的面积.

查看答案和解析>>

同步练习册答案