【题目】如图,在△ABC中,tan∠B=2,∠ACB=45°,AD⊥BC于点D,CE⊥AB于点E,AD、CE交于点F,若AC=5,则线段EF的长为_____.
【答案】
【解析】
根据题意先证明△ADC为等腰直角三角形,再由正弦函数求得AD与CD的长,由同角的余角相等及对顶角相等证得∠DFC=∠AFE=∠B,然后根据tan∠DFC=2求得DF的长,从而可得AF的长;根据tan∠AFE=tan∠B=2,设AE=2x,EF=x,由勾股定理表示出AF,利用EF=AFcos∠AFE求得EF的长即可.
解:∵在△ABC中,∠ACB=45°,AD⊥BC于点D,
∴△ADC为等腰直角三角形,
∴AD=CD,
∵AC=5,
∴AD=CD=ACsin45°=5×=5,
∵AD⊥BC于点D,CE⊥AB于点E,
∴∠B+∠BAD=∠AFE+∠BAD=90°,
∴∠DFC=∠AFE=∠B,
∵tan∠B=2,
∴tan∠DFC=2,
∴=2,
∴DF==,
∴AF=AD﹣DF=5﹣=,
∵tan∠AFE=tan∠B=2,
∴设AE=2x,EF=x,由勾股定理得AF=x=,
∴EF=x=,
故答案为:.
科目:初中数学 来源: 题型:
【题目】如图,已知AB是⊙O的直径,C是⊙O上一点,∠BAC的平分线交⊙O于点D,交⊙O的切线BE于点E,过点D作DF⊥AC,交AC的延长线于点F.
(1)求证:DF是⊙O的切线;
(2)若DF=3,DE=2.
①求值;
②求的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形纸片中,,.现将纸片折叠,折痕与矩形、边的交点分别为、.折叠后点的对应点始终在边上.若折痕始终与边,有交点,则点运动的最大距离是______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,关于x的二次函数y=ax2﹣2ax(a>0)的顶点为C,与x轴交于点O、A,关于x的一次函数y=﹣ax(a>0).
(1)试说明点C在一次函数的图象上;
(2)若两个点(k,y1)、(k+2,y2)(k≠0,±2)都在二次函数的图象上,是否存在整数k,满足?如果存在,请求出k的值;如果不存在,请说明理由;
(3)若点E是二次函数图象上一动点,E点的横坐标是n,且﹣1≤n≤1,过点E作y轴的平行线,与一次函数图象交于点F,当0<a≤2时,求线段EF的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线交x轴于A、B两点,交y轴于C点,A点坐标为(﹣1,0),OC=2,OB=3,点D为抛物线的顶点.
(1)求抛物线的解析式;
(2)P为坐标平面内一点,以B、C、D、P为顶点的四边形是平行四边形,求P点坐标;
(3)若抛物线上有且仅有三个点M1、M2、M3使得△M1BC、△M2BC、△M3BC的面积均为定值S,求出定值S及M1、M2、M3这三个点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax2﹣2ax.
(1)二次函数图象的对称轴是直线x= ;
(2)当0≤x≤3时,y的最大值与最小值的差为4,求该二次函数的表达式;
(3)若a<0,对于二次函数图象上的两点P(x1,y1),Q(x2,y2),当t≤x1≤t+1,x2≥3时,均满足y1≥y2,请结合函数图象,直接写出t的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,O为原点,点,点.
(1)如图①,求的长;
(2)将沿x轴向左平移,得到,点O,A,B的对应点分别为,,.
①如图②,当点落在直线上,求点的坐标;
②设,其中,的边与直线交于E,F两点,求的最大值(直接写出结果即可).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(2017重庆A卷第11题)如图,小王在长江边某瞭望台D处,测得江面上的渔船A的俯角为40°,若DE=3米,CE=2米,CE平行于江面AB,迎水坡BC的坡度i=1:0.75,坡长BC=10米,则此时AB的长约为( )(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84).
A. 5.1米 B. 6.3米 C. 7.1米 D. 9.2米
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=kx+b的图象与反比例函数y=的图象相交于A(-1,n),B(2,-1)两点,与y轴相交于点C.
(1)求一次函数与反比例函数的表达式;
(2)若点D与点C关于x轴对称,求△ABD的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com