精英家教网 > 初中数学 > 题目详情

【题目】如图,将长方形纸片ABCD折叠,使点D与点B重合,点C落在M处,若∠EFM125°,则∠ABE____________度.

【答案】20

【解析】

由折叠的性质知:∠EBM、∠BMF都是直角,∠BEF=DEF,因此BEMF,那么∠EFM和∠BEF互补,这样可得出∠BEF的度数,进而可求得∠AEB的度数,则∠ABE可在RtABE中求得.

解:由折叠的性质知,∠BEF=DEF,∠EBM=D=90°,∠BMF=C=90°
BEMF
∴∠EFM+BEF=180°
又∵∠EFM=125°
∴∠BEF=DEF=55°

∴∠ABE=180°-BEF-DEF =180°-55°-55°=70°
RtABE中,可求得∠ABE=90°-AEB=20°
故答案为20

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知一次函数y=kx+b的图象经过点(﹣2,5),并且与y轴交于点P,直线y=x+3与y轴交于点Q,点Q恰与点P关于x轴对称,求这个一次函数的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】4件同型号的产品中,有1件不合格品和3件合格品.

(1)从这4件产品中随机抽取1件进行检测,求抽到的是不合格品的概率;

(2)从这4件产品中随机抽取2件进行检测,求抽到的都是合格品的概率;

(3)在这4件产品中加入x件合格品后,进行如下试验:随机抽取1件进行检测,然后放回,多次重复这个试验,通过大量重复试验后发现,抽到合格品的频率稳定在0.95,则可以推算出x的值大约是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ACD和△BCE中, ACBCADBECDCE,∠ACE55°,∠BCD155°ADBE相交于点P,则∠BPD的度数为(  )

A.110°B.125°C.130°D.155°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD是一片水田,某村民小组需计算其面积,测得如下数据:∠A=90°,∠ABD=60°,∠CBD=54°,AB=200 m,BC=300 m.请你计算出这片水田的面积.(参考数据:sin 54°≈0.809,cos 54°≈0.588,tan 54°≈1.376,=1.732)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,BCE三点在一条直线上,⊿ABC和⊿DCE都为等边三角形,连接AEDB

1)试说出 AE=BD的理由、

2)如果把⊿DCEC点顺时针旋转一个角度,使BCE不在一条直线上,1)中的结论还成立吗?(只回答,不说理由)

3)在(2)中若AEBD相交于P, 求∠APB的度数、

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,BD、BE分别是高和角平分线,点F在CA的延长线上,FH⊥BE交BD于G,交BC于H,下列结论:①∠DBE=∠F;②2∠BEF=∠BAF+∠C;③∠F=(∠BAC﹣∠C);④∠BGH=∠ABE+∠C.

其中正确的是(  )

A.①②③B.①③④C.①②③④D.①②④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了解学生课余活动情况,某校对参加绘画、书法、舞蹈、乐器这四个课外兴趣小组的人员分布情况进行抽样调查,并根据收集的数据绘制了下面两幅不完整的统计图,请根据图中提供的信息,解答下面的问题:

(1)此次共调查了多少名同学?

(2)将条形图补充完整,并计算扇形统计图中书法部分的圆心角的度数;

(3)如果该校共有1000名学生参加这4个课外兴趣小组,而每个教师最多只能辅导本组的20名学生,估计每个兴趣小组至少需要准备多少名教师

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读理解:

(问题情境)

教材中小明用4张全等的直角三角形纸片拼成图1,利用此图,可以验证勾股定理吗?

(探索新知)

从面积的角度思考,不难发现:大正方形的面积=小正方形的面积 + 4个直角三角形的面积,从而得数学等式: ;(用含字母abc的式子表示)化简证得勾股定理:

(初步运用)

1)如图1,若b=2a ,则小正方形面积:大正方形面积=

2)现将图1中上方的两直角三角形向内折叠,如图2,若a= 4b= 6此时空白部分的面积为

(迁移运用)

如果用三张含60°的全等三角形纸片,能否拼成一个特殊图形呢?带着这个疑问,小丽拼出图3的等边三角形,你能否仿照勾股定理的验证,发现含60°的三角形三边abc之间的关系,写出此等量关系式及其推导过程.

知识补充:如图4,含60°的直角三角形,对边y :斜边x=定值k

查看答案和解析>>

同步练习册答案