【题目】如图,B、C、E三点在一条直线上,⊿ABC和⊿DCE都为等边三角形,连接AE、DB、
(1)试说出 AE=BD的理由、
(2)如果把⊿DCE绕C点顺时针旋转一个角度,使B、C、E不在一条直线上,(1)中的结论还成立吗?(只回答,不说理由)
(3)在(2)中若AE、BD相交于P, 求∠APB的度数、
【答案】(1)见解析(2)仍然成立(3)∠APB=60
【解析】
根据等边三角形的判定与性质、全等三角形的判定与性质求证
解:(1)理由是:∵△ABC、△DCE都为等边三角形,
∴BC=AC,DC=CE,∠ACB=∠DCE,
∴∠ACB+∠ACD=∠ACD+∠DCE,
即∠BCD=∠ACE,
在△BCD与△ACE中:
∴△BCD≌△ACE(SAS)
∴BD=AE;
(2)仍然成立;
理由是:∵△ABC、△DCE都为等边三角形,
∴BC=AC,DC=CE,∠ACB=∠DCE,
∴∠ACB+∠ACD=∠ACD+∠DCE,
即∠BCD=∠ACE,
在△BCD与△ACE中:
∴△BCD≌△ACE(SAS)
∴BD=AE;
(3)∵△BCD≌△ACE,
∴∠CAP=∠CBP,
∵△ABC是等边三角形,
∴∠CAB=∠CBA=60°,
∴∠APB=180°-(∠PAB+∠PBA)
=180°-(PAC+∠CAB+∠PBA)
=180°-(∠PAB+∠CBA)
=180°-(60°+60°)
=60°
即∠APB=60°.
科目:初中数学 来源: 题型:
【题目】甲、乙两车分别从相距420km的A、B两地相向而行,乙车比甲车先出发1小时,两车分别以各自的速度匀速行驶,途经C地(A、B、C三地在同一条直线上).甲车到达C地后因有事立即按原路原速返回A地,乙车从B地直达A地,甲、乙两车距各自出发地的路程y(千米)与甲车行驶所用的时间x(小时)的关系如图所示,结合图象信息回答下列问题:
(1)甲车的速度是 千米/时,乙车的速度是 千米/时;
(2)求甲车距它出发地的路程y(千米)与它行驶所用的时间x(小时)之间的函数关系式;
(3)甲车出发多长时间后两车相距90千米?请你直接写出答案.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】热爱学习的小明同学在网上搜索到下面的文字材料:
在x轴上有两个点它们的坐标分别为和.则这两个点所成的线段的长为;同样,若在y轴上的两点坐标分别为(0,b)和(0,d),则这两个点所成的线段的长为|b-d|.如图1,在直角坐标系中的任意两点P1,P2,其坐标分别为(a,b)和(c,d),分别过这两个点作两坐标轴的平行线,构成一个直角三角形,其中直角边P1Q=|a-c|,P2Q=|b-d|,利用勾股定理可得,线段P1 P2的长为.
根据上面材料,回答下面的问题:
(1)在平面直角坐标系中,已知,,则线段AB的长为_____;
(2)若点C在y轴上,点D的坐标是,且,则点C的坐标是_____;
(3)如图2,在直角坐标系中,点A,B的坐标分别为和,点C是y轴上的一个动点,且A,B,C三点不在同一条直线上,求△ABC周长的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,大楼AB右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上),已知AB=80 m,DE=10 m,求障碍物B,C两点间的距离.(结果精确到0.1 m)(参考数据: ≈1.414,、≈1.732)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,抛物线y=ax2+bx+c与x轴交于点A(2,0),B(4,0),且过点C(0,4).
(1)求出抛物线的表达式和顶点坐标;
(2)请你求出抛物线向左平移3个单位长度,再向上平移1.5个单位长度后抛物线的表达式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,P是抛物线y=-x2+3x上一点,且在x轴上方,过点P分别向x轴、y轴作垂线,得到矩形PMON.若矩形PMON的周长随点P的横坐标m增大而增大,则m的取值范围是_________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m, CE⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.
(2) 如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=,其中为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.
(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线经过点A(,0),B(,0),且与y轴相交于点C.
(1)求这条抛物线的表达式;
(2)求∠ACB的度数;
(3)设点D是所求抛物线第一象限上一点,且在对称轴的右侧,点E在线段AC上,且DE⊥AC,当△DCE与△AOC相似时,求点D的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com