18£®Èçͼ£¬ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬Å×ÎïÏßy=ax2+bx+3ÓëxÖá½»ÓÚµãA£¨-3£¬0£©¡¢C£¨1£¬0£©£¬ÓëyÖá½»ÓÚµãB£®
£¨1£©Çó´ËÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©µãPÊÇÖ±ÏßABÉÏ·½µÄÅ×ÎïÏßÉÏÒ»¶¯µã£¨²»ÓëµãA¡¢BÖØºÏ£©£¬¹ýµãP×÷xÖáµÄ´¹Ïߣ¬´¹×ãΪµãF£¬½»Ö±ÏßABÓÚµãE£¬×÷PD¡ÍABÓÚµãD£®
¢Ù¹ýµãPÔÚʲôλÖÃʱ£¬¡÷PDEµÄÖܳ¤×î´ó£¬Çó³ö´ËʱPµãµÄ×ø±ê£»
¢ÚÁ¬½ÓPA£¬ÒÔPAΪ±ß×÷Õý·½ÐÎAPMN£¬µ±¶¥µãM»òNÇ¡ºÃÂäÔÚÅ×ÎïÏß¶Ô³ÆÖáÉÏʱ£¬Çó³ö¶ÔÓ¦µÄPµãµÄ×ø±ê£®

·ÖÎö £¨1£©°ÑµãA¡¢CµÄ×ø±ê´úÈëÅ×ÎïÏß½âÎöʽ£¬ÀûÓôý¶¨ÏµÊý·¨Çó¶þ´Îº¯Êý½âÎöʽ½â´ð¼´¿É£»
£¨2£©¢Ù¸ù¾ÝµãA¡¢BµÄ×ø±êÇó³öOA=OB£¬´Ó¶øµÃµ½¡÷AOBÊǵÈÑüÖ±½ÇÈý½ÇÐΣ¬¸ù¾ÝµÈÑüÖ±½ÇÈý½ÇÐεÄÐÔÖʿɵáÏBAO=45¡ã£¬È»ºóÇó³ö¡÷PEDÊǵÈÑüÖ±½ÇÈý½ÇÐΣ¬¸ù¾ÝµÈÑüÖ±½ÇÈý½ÇÐεÄÐÔÖÊ£¬PDÔ½´ó£¬¡÷PDEµÄÖܳ¤×î´ó£¬ÔÙÅжϳöµ±ÓëÖ±ÏßABƽÐеÄÖ±ÏßÓëÅ×ÎïÏßÖ»ÓÐÒ»¸ö½»µãʱ£¬PD×î´ó£¬ÔÙÇó³öÖ±ÏßABµÄ½âÎöʽΪy=x+3£¬ÉèÓëABƽÐеÄÖ±Ïß½âÎöʽΪy=x+m£¬ÓëÅ×ÎïÏß½âÎöʽÁªÁ¢Ïûµôy£¬µÃµ½¹ØÓÚxµÄÒ»Ôª¶þ´Î·½³Ì£¬ÀûÓøùµÄÅбðʽ¡÷=0ÁÐʽÇó³ömµÄÖµ£¬ÔÙÇó³öx¡¢yµÄÖµ£¬´Ó¶øµÃµ½µãPµÄ×ø±ê£»
¢ÚÏÈÈ·¶¨³öÅ×ÎïÏߵĶԳÆÖᣬȻºó£¨i£©·ÖµãMÔÚ¶Ô³ÆÖáÉÏʱ£¬¹ýµãP×÷PQ¡Í¶Ô³ÆÖáÓÚQ£¬¸ù¾Ýͬ½ÇµÄÓà½ÇÏàµÈÇó³ö¡ÏAPF=¡ÏQPM£¬ÔÙÀûÓ᰽ǽDZߡ±Ö¤Ã÷¡÷APFºÍ¡÷MPQÈ«µÈ£¬¸ù¾ÝÈ«µÈÈý½ÇÐζÔÓ¦±ßÏàµÈ¿ÉµÃPF=PQ£¬ÉèµãPµÄºá×ø±êΪn£¬±íʾ³öPQµÄ³¤£¬¼´PF£¬È»ºó´úÈëÅ×ÎïÏß½âÎöʽ¼ÆËã¼´¿ÉµÃ½â£»£¨ii£©µãNÔÚ¶Ô³ÆÖáÉÏʱ£¬Í¬ÀíÇó³ö¡÷APFºÍ¡÷ANQÈ«µÈ£¬¸ù¾ÝÈ«µÈÈý½ÇÐζÔÓ¦±ßÏàµÈ¿ÉµÃPF=AQ£¬¸ù¾ÝµãAµÄ×ø±êÇó³öµãPµÄ×Ý×ø±ê£¬ÔÙ´úÈëÅ×ÎïÏß½âÎöʽÇó³öºá×ø±ê£¬¼´¿ÉµÃµ½µãPµÄ×ø±ê£®

½â´ð ½â£º£¨1£©¡ßÅ×ÎïÏßy=ax2+bx+3¾­¹ýµãA£¨-3£¬0£©£¬C£¨1£¬0£©£¬
¡à$\left\{\begin{array}{l}{9a-3b+3=0}\\{a+b+3=0}\end{array}\right.$£¬
½âµÃ$\left\{\begin{array}{l}{a=-1}\\{b=-2}\end{array}\right.$£¬
ËùÒÔ£¬Å×ÎïÏߵĽâÎöʽΪy=-x2-2x+3£»

£¨2£©¢Ù¡ßA£¨-3£¬0£©£¬B£¨0£¬3£©£¬
¡àOA=OB=3£¬
¡à¡÷AOBÊǵÈÑüÖ±½ÇÈý½ÇÐΣ¬
¡à¡ÏBAO=45¡ã£¬
¡ßPF¡ÍxÖᣬ
¡à¡ÏAEF=90¡ã-45¡ã=45¡ã£¬
ÓÖ¡ßPD¡ÍAB£¬
¡à¡÷PDEÊǵÈÑüÖ±½ÇÈý½ÇÐΣ¬
¡àPDÔ½´ó£¬¡÷PDEµÄÖܳ¤Ô½´ó£¬
Ò×µÃÖ±ÏßABµÄ½âÎöʽΪy=x+3£¬
ÉèÓëABƽÐеÄÖ±Ïß½âÎöʽΪy=x+m£¬
ÁªÁ¢$\left\{\begin{array}{l}{y=x+m}\\{y=-{x}^{2}-2x+3}\end{array}\right.$£¬
ÏûµôyµÃ£¬x2+3x+m-3=0£¬
µ±¡÷=32-4¡Á1¡Á£¨m-3£©=0£¬
¼´m=$\frac{21}{4}$ʱ£¬Ö±ÏßÓëÅ×ÎïÏßÖ»ÓÐÒ»¸ö½»µã£¬PD×£¬
´Ëʱx=-$\frac{3}{2}$£¬y=-$\frac{3}{2}$+$\frac{21}{4}$=$\frac{15}{4}$£¬
¡àµãP£¨-$\frac{3}{2}$£¬$\frac{15}{4}$£©Ê±£¬¡÷PDEµÄÖܳ¤×î´ó£»

¢ÚÅ×ÎïÏßy=-x2-2x+3µÄ¶Ô³ÆÖáΪֱÏßx=-$\frac{-2}{2¡Á£¨-1£©}$=-1£¬
£¨i£©Èçͼ1£¬µãMÔÚ¶Ô³ÆÖáÉÏʱ£¬¹ýµãP×÷PQ¡Í¶Ô³ÆÖáÓÚQ£¬

ÔÚÕý·½ÐÎAPMNÖУ¬AP=PM£¬¡ÏAPM=90¡ã£¬
¡à¡ÏAPF+¡ÏFPM=90¡ã£¬¡ÏQPM+¡ÏFPM=90¡ã£¬
¡à¡ÏAPF=¡ÏQPM£¬
¡ßÔÚ¡÷APFºÍ¡÷MPQÖУ¬
$\left\{\begin{array}{l}{¡ÏAPF=¡ÏQPM}\\{¡ÏAFP=¡ÏMQP=90¡ã}\\{AP=PM}\end{array}\right.$£¬
¡à¡÷APF¡Õ¡÷MPQ£¨AAS£©£¬
¡àPF=PQ£¬
ÉèµãPµÄºá×ø±êΪn£¨n£¼0£©£¬ÔòPQ=-1-n£¬
¼´PF=-1-n£¬
¡àµãPµÄ×ø±êΪ£¨n£¬-1-n£©£¬
¡ßµãPÔÚÅ×ÎïÏßy=-x2-2x+3ÉÏ£¬
¡à-n2-2n+3=-1-n£¬
ÕûÀíµÃ£¬n2+n-4=0£¬
½âµÃn1=$\frac{-1+\sqrt{17}}{2}$£¨ÉáÈ¥£©£¬n2=$\frac{-1-\sqrt{17}}{2}$£¬
-1-n=-1-$\frac{-1-\sqrt{17}}{2}$=$\frac{-1+\sqrt{17}}{2}$£¬
ËùÒÔ£¬µãPµÄ×ø±êΪ£¨$\frac{-1-\sqrt{17}}{2}$£¬$\frac{-1+\sqrt{17}}{2}$£©£»

£¨ii£©Èçͼ2£¬µãNÔÚ¶Ô³ÆÖáÉÏʱ£¬ÉèÅ×ÎïÏß¶Ô³ÆÖáÓëxÖá½»ÓÚµãQ£¬

¡ß¡ÏPAF+¡ÏFPA=90¡ã£¬¡ÏPAF+¡ÏQAN=90¡ã£¬
¡à¡ÏFPA=¡ÏQAN£¬
ÓÖ¡ß¡ÏPFA=¡ÏAQN=90¡ã£¬PA=AN£¬
¡à¡÷APF¡Õ¡÷NAQ£¬
¡àPF=AQ£¬
ÉèµãP×ø±êΪP£¨x£¬-x2-2x+3£©£¬
ÔòÓÐ-x2-2x+3=-1-£¨-3£©=2£¬
½âµÃx=$\sqrt{2}$-1£¨²»ºÏÌâÒ⣬ÉáÈ¥£©»òx=-$\sqrt{2}$-1£¬
´ËʱµãP×ø±êΪ£¨-$\sqrt{2}$-1£¬2£©£®
×ÛÉÏËùÊö£¬µ±¶¥µãMÇ¡ºÃÂäÔÚÅ×ÎïÏß¶Ô³ÆÖáÉÏʱ£¬µãP×ø±êΪ£¨$\frac{-1-\sqrt{17}}{2}$£¬$\frac{-1+\sqrt{17}}{2}$£©£¬µ±¶¥µãNÇ¡ºÃÂäÔÚÅ×ÎïÏß¶Ô³ÆÖáÉÏʱ£¬µãPµÄ×ø±êΪ£¨-$\sqrt{2}$-1£¬2£©£®

µãÆÀ ±¾ÌâÊǶþ´Îº¯Êý×ÛºÏÌâÐÍ£¬Ö÷Òª¿¼²éÁË´ý¶¨ÏµÊý·¨Çó¶þ´Îº¯Êý½âÎöʽ£¬µÈÑüÖ±½ÇÈý½ÇÐεÄÅж¨ÓëÐÔÖÊ£¬Õý·½ÐεÄÐÔÖÊ£¬È«µÈÈý½ÇÐεÄÅж¨ÓëÐÔÖÊ£¬Å×ÎïÏßÉϵãµÄ×ø±êÌØÕ÷£¬£¨2£©È·¶¨³ö¡÷PDEÊǵÈÑüÖ±½ÇÈý½ÇÐΣ¬´Ó¶øÅжϳöµãPΪƽÐÐÓÚABµÄÖ±ÏßÓëÅ×ÎïÏßÖ»ÓÐÒ»¸ö½»µãʱµÄλÖÃÊǽâÌâµÄ¹Ø¼ü£¬£¨3£©¸ù¾ÝÈ«µÈÈý½ÇÐεÄÐÔÖÊÓõãPµÄºá×ø±ê±íʾ³ö×Ý×ø±ê»òÓÃ×Ý×ø±êÇó³öºá×ø±êÊǽâÌâµÄ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®¹ØÓÚxµÄ·Öʽ·½³Ì$\frac{2}{x-2}$+$\frac{x+m}{2-x}$=2Î޽⣬ÔòmµÄֵΪ£¨¡¡¡¡£©
A£®-2B£®-1C£®0D£®2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®¼ÆË㣺a-$\frac{1}{3}$£¨a+b£©+$\frac{1}{2}$£¨a-b£©-$\frac{1}{6}$£¨a-2b£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®Èçͼ£¬DÊÇAB±ßÉϵÄÖе㣬DE¡ÎBC£¬½«¡÷ABCÑØ¹ýDµÄÖ±ÏßÕÛµþ£¬Ê¹µãAÂäÔÚBCÉÏF´¦£¬
£¨1£©Èô¡ÏB=50¡ã£¬Çó¡ÏBDFµÄ¶ÈÊý£®
£¨2£©Èô¡ÏC=70¡ã£¬Çó¡ÏCEFµÄ¶ÈÊý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®Èçͼ£¬ÔÚÕý·½ÐÎABCDÖУ¬E£¬F·Ö±ðΪAB£¬BCµÄÖе㣬AF£¬DEÏཻÓÚµãG£¬Á¬½ÓCG£¬Ôòtan¡ÏDGC=2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®Èç¹ûÒ»¸ö½ÇµÄÓà½ÇÊÇ35¡ã24¡ä£¬ÄÇôÕâ¸ö½ÇÊÇ54¡ã36¡ä£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®µÈ±ßÈý½ÇÐÎÃæ»ýΪ8$\sqrt{3}$cm£¬ÔòËüµÄ±ß³¤£¨¡¡¡¡£©
A£®2$\sqrt{2}$cmB£®4$\sqrt{2}$cmC£®8$\sqrt{2}$cmD£®ÒÔÉϽáÂÛ¶¼²»¶Ô

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®Èçͼ¡ÏAOC=60¡ã£¬OBÊÇ¡ÏAOCµÄƽ·ÖÏߣ¬ÈôÔÙ°Ñ¡ÏAOBËĵȷ֣¬Ã¿Ò»·ÝÊǶàÉٶȽǣ¨¾«È·µ½·Ö£©£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®¼ÆË㣺
£¨1£©£¨$\sqrt{18}$-$\sqrt{50}$+3$\sqrt{8}$£©¡Â$\sqrt{2}$
£¨2£©$\sqrt{12}$-£¨$\sqrt{3}$+1£©2+$\sqrt{\frac{3}{4}}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸