精英家教网 > 初中数学 > 题目详情

【题目】如图,以AD为直径的半圆O经过RtABC斜边AB的两个端点,交直角边AC于点EBE是半圆弧的三等分点,的长为,则图中阴影部分的面积为(  )

A.B.C.D.

【答案】D

【解析】

连接BDBEBOEO,先根据BE是半圆弧的三等分点求出圆心角∠BOD的度数,再利用弧长公式求出半圆的半径R,再利用圆周角定理求出各边长,通过转化将阴影部分的面积转化为SABCS扇形BOE然后分别求出面积相减即可得出答案.

解:连接BDBEBOEO

BE是半圆弧的三等分点,

∴∠EOA=∠EOB=∠BOD60°,

∴∠BAD=∠EBA30°,

BEAD

的长为

解得:R4

ABADcos30°=

BCAB

ACBC6

SABC×BC×AC××6

∵△BOE和△ABE同底等高,

∴△BOE和△ABE面积相等,

∴图中阴影部分的面积为:SABCS扇形BOE

故选:D

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,ABAC,以AB为直径的⊙OBC于点D.延长CA交⊙O于点EBH是⊙O的切线,作CHBH.垂足为H

1)求证:BEBH

2)若AB5tanCBE2,求BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两车分别从AB两地同时出发,在同一条公路上,匀速行驶,相向而行,到两车相遇时停止.甲车行驶一段时间后,因故停车0.5小时,故障解除后,继续以原速向B地行驶,两车之间的路程y(千米)与出发后所用时间x(小时)之间的函数关系如图所示.

1)求甲、乙两车行驶的速度VV.

2)求m的值.

3)若甲车没有故障停车,求可以提前多长时间两车相遇.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】对某一个函数给出如下定义:对于函数y,若当,函数值y满足,且满足,则称此函数为“k属和合函数”

例如:正比例函数,当时,,则,求得:,所以函数为“3属和合函数”.

1)①一次函数为“k属和合函数”,则k的值为______

②若一次函数为“1属和合函数”,求a的值;

2)反比例函数)是“k属和合函数”,且,请求出的值;

3)已知二次函数,当时,y是“k属和合函数”,求k的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】美丽的黄河宛如一条玉带穿城而过,沿河两岸的滨河路风情线是兰州最美的景观之一.数学课外实践活动中,小林在南滨河路上的AB两点处,利用测角仪分别对北岸的一观景亭D进行了测量.如图,测得∠DAC=45°,DBC=65°.AB=132米,求观景亭D到南滨河路AC的距离(结果精确到1米,参考数据:sin65°0.91,cos65°0.42,tan65°2.14).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个不透明的口袋中装有4个分别标有数1,2,3,4的小球,它们的形状、大小完全相同,小红先从口袋里随机摸出一个小球记下数为x,小颖在剩下的3个球中随机摸出一个小球记下数为y,这样确定了点P的坐标(x,y).

(1)小红摸出标有数3的小球的概率是多少?.

(2)请你用列表法或画树状图法表示出由x,y确定的点P(x,y)所有可能的结果.

(3)求点P(x,y)在函数y=﹣x+5图象上的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】今年疫情防控期间.某小区卫生所决定购买AB两种口罩.以满足小区居民的需要.若购买A种口罩9包,B种口罩4包,则需要700元;若购买A种口罩3包.B种口罩5包.则需要380元.

1)购买人AB两种口罩每包各需名少元?

2)卫生所准备购进这两种口罩共90包,并且A种口罩包数不少于B种口罩包数的2倍,请设计出最省钱的购买方案,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,抛物线yx2+bx经过点A20).直线yx2x轴交于点B,与y轴交于点C

1)求这条抛物线的表达式和顶点的坐标;

2)将抛物线yx2+bx向右平移,使平移后的抛物线经过点B,求平移后抛物线的表达式;

3)将抛物线yx2+bx向下平移,使平移后的抛物线交y轴于点D,交线段BC于点PQ,(点P在点Q右侧),平移后抛物线的顶点为M,如果DPx轴,求∠MCP的正弦值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在四边形ABCD中,点G在边BC的延长线上,CE平分∠BCD,CF平分∠GCD,EF∥BCCD于点O.

(1)求证:OE=OF;

(2)若点OCD的中点,求证:四边形DECF是矩形.

查看答案和解析>>

同步练习册答案