精英家教网 > 初中数学 > 题目详情

【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图,有下列5个结论:①abc<0;②4a+2b+c>0;③2a+b=0;④b2>4ac; ⑤ 3a+c>0.其中正确的结论的有( )

A.2个B.3个C.4个D.5个

【答案】C

【解析】

根据二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定解答.

开口向下,则a<0
y轴交于正半轴,则c>0
>0
b>0
abc<0,①正确;

x=0时,y>0,对称轴是x=1
∴当x=2时,y>0
4a+2b+c>0,②正确;

=1
b=2a
2a+b=0,③正确;

b24ac>0
b2>4ac,④正确;
=1
b=2a
ab+c<0
3a+c<0,⑤错误;

故选:C.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知二次函数yax2+bx+ca≠0)的图象如图所示,并且关于x的一元二次方程ax2+bx+cm=0有两个不相等的实数根,下列结论:b2﹣4ac<0;②abc>0;③ab+c<0;④m>﹣2,其中,正确的个数有(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】要修一个圆形喷水池,在池中心竖直安装一根水管,水管的顶端安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为1m处达到最高,高度为3m,水柱落地处离池中心3m,水管应多长?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知直线y=-2x+3与抛物线y=x2相交于A,B两点,O为坐标原点.

(1)求点AB的坐标;

(2)连结OA,OB,求△OAB的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,BAD是由BEC在平面内绕点B旋转60°而得,且ABBC,BE=CE,连接DE.

(1)求证:BDE≌△BCE;

(2)试判断四边形ABED的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,已知AB⊙O的直径,CD是弦,且AB⊥CD于点E,连接ACOCBC

1)求证:∠ACO∠BCD

2)若EB8cmCD24cm,求⊙O的面积.(结果保留π

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商店销售一种成本为的水产品,若按销售,一个月可售出,售价毎涨元,月销售量就减少

写出月销售利润(元)与售价(元)之间的函数表达式;

当售价定为多少元时,该商店月销售利润为元?

当售价定为多少元时会获得最大利润?求出最大利润.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)问题发现

如图1,在Rt△ABC中,∠A=90°,=1,点P是边BC上一动点(不与点B重合),∠PAD=90°,∠APD=∠B,连接 CD.

(1)①求的值;②求∠ACD的度数.

(2)拓展探究

如图 2,在Rt△ABC中,∠A=90°,=k.点P是边BC上一动点(不与点B重合),∠PAD=90°,∠APD=∠B,连接CD,请判断∠ACD与∠B 的数量关系以及PB与CD之间的数量关系,并说明理由.

(3)解决问题

如图 3,在△ABC中,∠B=45°,AB=4,BC=12,P 是边BC上一动点(不与点B重合),∠PAD=∠BAC,∠APD=∠B,连接CD.若 PA=5,请直接写出CD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数yax2bxca≠0)的图象所示,对称轴为x=1,给出下列结论:①abc>0;②当x>2时,y>0;③3ac>0;④3a+b>0.其中正确的结论有( )

A. ①② B. ①④ C. ①③④ D. ②③④

查看答案和解析>>

同步练习册答案