精英家教网 > 初中数学 > 题目详情

【题目】某商店销售一种成本为的水产品,若按销售,一个月可售出,售价毎涨元,月销售量就减少

写出月销售利润(元)与售价(元)之间的函数表达式;

当售价定为多少元时,该商店月销售利润为元?

当售价定为多少元时会获得最大利润?求出最大利润.

【答案】(1)y;(2)当售价定为元或元时,该商店月销售利润为元;

当售价为元,利润最大,最大利润是元.

【解析】

(1)根据月销售利润=每千克的利润×数量就可以表示出月销售利润y(单位:元)与售价x(单位:元/千克)之间的函数解析式;
(2)当y=8000时,代入(1)的解析式求出结论即可,
(3)将(1)的解析式化为顶点式就可以求出结论.

解:(1)由题意,得
y=(x-40)[500-10(x-50)],
y=-10x2+1400x-40000=
答:y与x之间的函数关系式为:y=-10x2+1400x-40000;
(2)由题意,得
8000=-10x2+1400x-40000,
解得:x1=60,x2=80.

答:销售单价应定为80元;
(3)∵y=-10x2+1400x-40000.
∴y=-10(x-70)2+9000.
∴a=-10<0,y有最大值.
∴当x=70时.y最大=9000元.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图1,抛物线y=ax2+bx+3x轴于点A(﹣1,0)和点B(3,0).

(1)求该抛物线所对应的函数解析式;

(2)如图2,该抛物线与y轴交于点C,顶点为F,点D(2,3)在该抛物线上.

①求四边形ACFD的面积;

②点P是线段AB上的动点(点P不与点A、B重合),过点PPQx轴交该抛物线于点Q,连接AQ、DQ,当△AQD是直角三角形时,求出所有满足条件的点Q的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形纸片ABCD,P为正方形AD边上的一点(不与点A,点D重合),将正方形纸片折叠,使点B落在点P处,点C落在点G处,PG交DC于点H,折痕为EF,连接BP,BH.BH交EF于点M,连接PM.下列结论:①BE=PE;②EF=BP;③PB平分∠APG;④MH=MF;⑤BP=BM,其中正确结论的个数是(  )

A. 5 B. 4 C. 3 D. 2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知有两辆玩具车进行30米的直跑道比赛,两车从起点同时出发,A车到达终点时,B车离终点还差12米,A车的平均速度为2.5/秒.

1)求B车的平均速度;

2)如果两车重新比赛,A车从起点退后12米,两车能否同时到达终点?请说明理由;

3)在(2)的条件下,若调整A车的平均速度,使两车恰好同时到达终点,求调整后A车的平均速度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数轴的交点为(点在点的左侧),与轴的交点为,顶点部分为,若点是四边形边上的点,则的最大值为(

A. -6 B. -8 C. -12 D. -18

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠1=∠2,若添加一个条件后,仍无法判定ABC≌△ABD的是(  )

A.3=∠4B.C=∠DC.BCBDD.ACAD

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中∠ABC=90°,AC的垂直平分线交BCD点,交ACE点,OC=OD.

(1)若,DC=4,求AB的长;

(2)连接BE,若BEDEC的外接圆的切线,求∠C的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AOB=30°OP平分AOBPDOBDPCOBOAC,若PC=6,则PD=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:在△ABC中,AC=BC∠ACB=90°,点DAB的中点,点EAB边上一点.

1)直线BF垂直于直线CE于点F,交CD于点G(如图1),求证:AE=CG

2)直线AH垂直于直线CE,垂足为点H,交CD的延长线于点M(如图2),找出图中与BE相等的线段,并证明.

查看答案和解析>>

同步练习册答案