精英家教网 > 初中数学 > 题目详情

【题目】已知二次函数轴的交点为(点在点的左侧),与轴的交点为,顶点部分为,若点是四边形边上的点,则的最大值为(

A. -6 B. -8 C. -12 D. -18

【答案】A

【解析】

令y=0,求得与x轴的交点坐标,令x=0,求得与y轴的交点坐标,根据顶点式解析式得顶点坐标,设z=3x-y,则y=3x-z.如图由函数y=3x-z的图象可知,欲求z的最大值,可以转化为求直线y=3x-z与y轴交点的纵坐标的最小值即可.

令y=0,则x2+8x+12=0,
解得:x1=-2,x2=-6,
∵点A在点C的左侧,
∴A(-6,0)、C(-2,0),
令x=0,则y=12,
与y轴交点坐标为B(0,12),
∵y=(x+4)2-4
∴顶点坐标D为(-4,-4).
设z=3x-y,则y=3x-z.
如图由函数y=3x-z的图象可知,欲求z的最大值,可以转化为求直线y=3x-z与y轴交点的纵坐标的最小值即可,

由图象可知当直线经过点C时-z的值最小,z的值最大,
把(-2,0)代入y=3x-z,得到z=-6,
∴z的最大值为-6.

故选:A

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知∠BAC的平分线与BC的垂直平分线DG相交于点DDEABDFAC,垂足分别为EF

1)连接CDBD,求证:CDF≌△BDE

2)若AE5AC3,求BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲和乙玩一种游戏:从装有大小相同的个红球和一个黄球的袋子中,任意摸出球,如果摸到黄球,甲得分;如果摸到红球,乙得分.

你认为这个游戏公平吗?

假设玩这个游戏次,甲大约得多少分,乙大约得多少分?

如果你认为游戏不公平,那么怎样修改得分标准才公平?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等腰三角形ABC的底边BC长为4,面积是12,腰AB的垂直平分线EF分别交ABAC于点EF,若点D为底边BC的中点,点M为线段EF上一动点,则△BDM的周长的最小值为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,B、A、F三点在同一直线上,(1)AD∥BC,(2)∠B=∠C,(3)AD平分∠EAC.

请你用其中两个作为条件,另一个作为结论,构造一个真命题,并证明.

己知:______________________________________________________.

求证:______________________________________________________.

证明:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商店销售一种成本为的水产品,若按销售,一个月可售出,售价毎涨元,月销售量就减少

写出月销售利润(元)与售价(元)之间的函数表达式;

当售价定为多少元时,该商店月销售利润为元?

当售价定为多少元时会获得最大利润?求出最大利润.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某中学开展了手机伴我健康行主题活动.他们随机抽取部分学生进行手机使用目的每周使用手机时间的问卷调查,并绘制成如图的统计图。已知查资料人人数是40人。

请你根据以上信息解答以下问题

1)在扇形统计图中,玩游戏对应的圆心角度数是_______________

2)补全条形统计图

3)该校共有学生1200人,估计每周使用手机时间在2小时以上(不含2小时)的人数

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,抛物线y=ax2+bx+cx轴交于点A(﹣1,0)、B(3,0),与y轴交于点C,顶点为D,对称轴为直线x=1,有下列四个判断:

①关于x的一元二次方程ax2+bx+c=0的两个根分别是x1=﹣1,x2=3;

a﹣b+c=0;

③若抛物线上有三个点分别为(﹣2,y1)、(1,y2)、(2,y3),则y1<y2<y3

④当OC=3时,点P为抛物线对称轴上的一个动点,则△PCA的周长的最小值是

上述四个判断中正确的 有(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC中,ABAC,以AB为直径的⊙OAC于点E,交BC于点DPAC延长线上一点,且∠PBCBAC,连接DEBE

(1)求证:BP是⊙O的切线;

(2)若sinPBCAB=10,求BP的长.

查看答案和解析>>

同步练习册答案