【题目】如图,等腰三角形ABC的底边BC长为4,面积是12,腰AB的垂直平分线EF分别交AB,AC于点E、F,若点D为底边BC的中点,点M为线段EF上一动点,则△BDM的周长的最小值为_____.
【答案】8
【解析】
连接AD交EF与点M′,连结AM,由线段垂直平分线的性质可知AM=MB,则BM+DM=AM+DM,故此当A、M、D在一条直线上时,MB+DM有最小值,然后依据要三角形三线合一的性质可证明AD为△ABC底边上的高线,依据三角形的面积为12可求得AD的长.
解:连接AD交EF与点M′,连结AM.
∵△ABC是等腰三角形,点D是BC边的中点,
∴AD⊥BC,
∴S△ABC=BCAD=×4×AD=12,解得AD=6,
∵EF是线段AB的垂直平分线,
∴AM=BM.
∴BM+MD=MD+AM.
∴当点M位于点M′处时,MB+MD有最小值,最小值6.
∴△BDM的周长的最小值为DB+AD=2+6=8.
科目:初中数学 来源: 题型:
【题目】某厂家在甲、乙两家商场销售同一商品所获得的利润分别为,(单位:元),,与销售数量x(单位:件)的函数关系如图所示,试根据图象解决下列问题:
(1)分别求出,关于x的函数关系式;
(2)现厂家分配该商品800件给甲商场,400件给乙商场,当甲、乙商场售完这批商品后,厂家可获得的总利润是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC,∠C=90°,AC=12,BC=6,一条线段PQ=AB,P、Q两点分别在AC和过点A且垂直于AC的射线AX上运动,要使△ABC和△QPA全等,则AP= ______ .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两单位为爱心基金捐款,其中甲单位捐款4800元,乙单位捐款6000元,已知乙单位捐款人数比甲单位多30人,且两单位人均捐款数相等,问这两单位一共有多少人?人均捐款额是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AC、BD相交于点O,∠A=∠D,要使得△AOB≌△DOC,还需补充一个条件,下面补充的条件不一定正确的是( )
A.OA=ODB.AB=DCC.OB=OCD.∠ABO=∠DCO
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知 DE∥BC,CD 与 BE 相交于点 O,并且 S△DOE:S△COB=4:9,
(1)求 AE:AC 的值;
(2)求△ADE 与四边形 DBCE 的面积比。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】解决下列两个问题:
(1)如图1,在△ABC中,AB=4,AC=6,BC=7,EF垂直平分BC,P为直线EF上一动点,PA+PB的最小值为______,并在图中标出当PA+PB取最小值时点P的位置.
(2)如图2,点M、N在∠BAC的内部,请在∠BAC的内部求作一点P,使得点P到∠BAC两边的距离相等,且使PM=PN.(尺规作图,保留作图痕迹,无需证明)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com